References
- Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem. 2007, 42, 271-331. https://doi.org/10.1016/S0065-3160(07)42006-8
- Brown, R. S.; Neverov, A. A.; Tsang J. S. W.; Gibson, G. T. T.; Montoya-Pelaez, P. J. Can. J. Chem. 2004, 82, 1791-1805. https://doi.org/10.1139/v04-167
- Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32, 485-493. https://doi.org/10.1021/ar9500877
- Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455. https://doi.org/10.1039/cs9952400449
- Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373. https://doi.org/10.1006/bioo.2000.1176
- Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363. https://doi.org/10.1021/ja00077a039
- Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551-5557. https://doi.org/10.1021/ja00170a020
- Kim, H. M.; Jang, B.; Cheon, Y. E.; Suh, M. P.; Suh, J. J. Biol. Inorg. Chem. 2009, 14, 151-157. https://doi.org/10.1007/s00775-008-0434-z
- Jang, B.; Suh, J. Bull. Korean Chem. Soc. 2008, 29, 202-204. https://doi.org/10.5012/bkcs.2008.29.1.202
- Jang, S. W.; Suh, J. Org. Lett. 2008, 10, 481-484. https://doi.org/10.1021/ol702860h
- Kim, M. G.; Kim, M. S.; Lee, S. D.; Suh, J. J. Biol. Inorg. Chem. 2006, 11, 867-875. https://doi.org/10.1007/s00775-006-0139-0
- Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872-4877. https://doi.org/10.1021/ic980205x
- Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett. 1994, 4, 1889-1892. https://doi.org/10.1016/S0960-894X(01)80391-7
- Edwards, D. R.; Liu, C. T.; Garrett, G. E.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2009, 131, 13738-13748. https://doi.org/10.1021/ja904659e
- Liu, C. T.; Melnychuk, S. A.; Liu, C.; Neverov, A. A.; Brown, R. S. Can. J. Chem. 2009, 87, 640-649. https://doi.org/10.1139/V09-026
- Tsang, W. Y.; Edwards, D. R; Melnychuk, S. A.; Liu, C. T.; Liu, C.; Neverov, A. A.; Willams, N. H.; Brown, R. S. J. Am. Chem. Soc. 2009, 131, 4159-4166. https://doi.org/10.1021/ja900525t
- Edwards, D. R.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2009, 131, 368-377. https://doi.org/10.1021/ja807984f
- Liu, C. T.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2008, 1301, 16711-16720.
- Gibson, G. T. T.; Mohamed, M. F.; Neverov, A. A.; Brown, R. S. Inorg. Chem. 2006, 45, 7895-7902.
- Gibson, G. T. T.; Neverov, A. A.; Teng, A. C.-T.; Brown, R. S. Can. J. Chem. 2005, 83, 1268-1276. https://doi.org/10.1139/v05-065
- Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448. https://doi.org/10.1139/v89-220
- Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon J. G. Chem. Commun. 1984, 162-163.
- Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475. https://doi.org/10.1039/b501537e
- Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610. https://doi.org/10.1039/b314886f
- Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167. https://doi.org/10.1039/b208408b
- Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63. https://doi.org/10.1139/v02-202
- Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
- Pregel, M. J.; Buncel, E. J. Org. Chem. 1991, 56, 5583-5588. https://doi.org/10.1021/jo00019a022
- Pregel, M. J.; Dunn, E. J.; Buncel, E. Can. J. Chem. 1990, 68, 1846-1858. https://doi.org/10.1139/v90-287
- Buncel, E.; Pregel, M. J. J. Chem. Soc., Chem. Commun. 1989, 1566-1567.
- Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K.; Buncel, E. J. Org. Chem. 2008, 73, 923-930. https://doi.org/10.1021/jo702138h
- Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
- Um, I. H.; Lee, S. E.; Hong, Y. J.; Park, J. E. Bull. Korean Chem. Soc. 2008, 29, 117-121. https://doi.org/10.5012/bkcs.2008.29.1.117
- Um, I. H.; Hong, Y. J.; Lee, Y. J. Bull. Korean Chem. Soc. 1998, 19, 147-150.
- Um, I. H.; Nahm, J. H.; Lee, Y. J.; Kwon, D. S. Bull. Korean Chem. Soc. 1996, 17, 840-845.
- Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411. https://doi.org/10.1135/cccc19823405
- Barthel, J.; Justice, J.-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113. https://doi.org/10.1524/zpch.1973.84.1-4.100
- Um, I. H.; Hong, Y. J.; Kwon, D. S. Tetrahedron 1997, 53, 5073-5082. https://doi.org/10.1016/S0040-4020(97)00227-5
- Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
- Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
- Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
- Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
- Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
- Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
- Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212-1217. https://doi.org/10.1021/jo802446y
- Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
- Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69, 2436-2441. https://doi.org/10.1021/jo035854r
- Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
- Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
- Cevasco, G.; Vigo, D.; Thea, S. Org. Lett. 1999, 1, 1165-1167. https://doi.org/10.1021/ol990796a
- Cevasco, G.; Guanti, G.; Hopkins, A. R.; Thea, S.; Williams, A. J. Org. Chem. 1985, 50, 479-484. https://doi.org/10.1021/jo00204a011
- Thea, S.; Cevasco, G.; Guanti, G.; Kashefi-Naini, N.; Williams, A. J. Org. Chem. 1985, 50, 1867-1872. https://doi.org/10.1021/jo00211a016
Cited by
- Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 4-Nitrophenyl Nicotinate and Isonicotinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1951
- Evidence of cation-coordination involvement in directing the regioselective di-inversion reaction of vicinal di-sulfonate esters vol.11, pp.11, 2013, https://doi.org/10.1039/c3ob27336a
- -Acylpyridinium Ions and Other Acylating Agents vol.2013, pp.11, 2013, https://doi.org/10.1002/ejoc.201201540
- Enthalpy-Entropy Correlations in Reactions of Aryl Benzoates with Potassium Aryloxides in Dimethylformamide vol.45, pp.4, 2013, https://doi.org/10.1002/kin.20763
- Reactions of Aryl Benzoates with Potassium Aryloxides: Solvent Effects on Reaction Pathway and Kinetics vol.47, pp.5, 2015, https://doi.org/10.1002/kin.20909
- Metal Ion Catalysis in Nucleophilic Displacement Reactions of 2-Pyridyl X-Substituted Benzoates with Potassium Ethoxide in Anhydrous Ethanol vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3543
- Metal Ion Catalysis in Nucleophilic Substitution Reaction of 4-Nitrophenyl Picolinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.31, pp.9, 2010, https://doi.org/10.5012/bkcs.2010.31.9.2483
- Effect of Alkali Metal Ions on Alkaline Ethanolysis of 2-Pyridyl and 4-Pyridyl Benzoates in Anhydrous Ethanol vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2929
- Kinetic and Theoretical Studies on Alkaline Ethanolysis of 4‐Nitrophenyl Salicylate: Effect of Alkali Metal Ions on Reactivity and Mechanism vol.17, pp.10, 2010, https://doi.org/10.1002/chem.201002692
- Alkali Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 3,4-Dinitrophenyl Diphenylphosphinothioate with Alkali Metal Ethoxides in Anhydrous Ethanol: Effect of Changing Elec vol.32, pp.7, 2010, https://doi.org/10.5012/bkcs.2011.32.7.2423