DOI QR코드

DOI QR Code

Microstructure and Tensile Properties of Spray Cast Cu-Sn-Ni-Si Alloy

가스분무주조 Cu-Sn-Ni-Si 합금의 미세조직 및 상온 인장성질

  • Kang, Hee-Soo (Advanced Metallic Materials Research Department, Research Institute of Industrial Science & Technology) ;
  • Lee, Eon-Sik (Advanced Metallic Materials Research Department, Research Institute of Industrial Science & Technology) ;
  • Lee, Gyu-Chang (Advanced Metallic Materials Research Department, Research Institute of Industrial Science & Technology) ;
  • Baik, Kyeong-Ho (Department of Nanomaterials Engineering, Chungnam National University)
  • 강희수 (포항산업과학연구원 신금속연구본부) ;
  • 이언식 (포항산업과학연구원 신금속연구본부) ;
  • 이규창 (포항산업과학연구원 신금속연구본부) ;
  • 백경호 (충남대학교 나노소재공학과)
  • Received : 2010.10.28
  • Accepted : 2010.12.03
  • Published : 2010.12.28

Abstract

In this study, Cu-10Sn and Cu-10Sn-2Ni-0.2Si alloys have been manufactured by spray casting in order to achieve a fine scale microstructure and high tensile strength, and investigated in terms of microstructural evolution, aging characteristics and tensile properties. Spray cast alloys had a much lower microhardness than continuous cast billet because of an improved homogenization and an extended Sn solid solubility. Spray cast Cu-Sn-Ni-Si alloy was characterized by an equiaxed grain microstructure with a small-sized (Ni, Si)-rich precipitates. Cold rolling of Cu-Sn-Ni-Si alloy increased a tensile strength to 1220 MPa, but subsequent ageing treatment reduced a ultimate tensile strength to 780 MPa with an elongation of 18%.

Keywords

References

  1. W. A. Soffa and D. E. Laughlin: Prog. Mater. Sci., 49 (2004) 347. https://doi.org/10.1016/S0079-6425(03)00029-X
  2. S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki and Y. Waseda: J. Alloys Compounds, 417 (2006) 116. https://doi.org/10.1016/j.jallcom.2005.09.037
  3. J. C. Zhao and M. R. Notis: Acta Materialia, 46 (1998) 4203. https://doi.org/10.1016/S1359-6454(98)00095-0
  4. P. Virtanen, T. Tiainen, and T. Lepisto: Mater. Sci. Eng. A, 251 (1998) 269. https://doi.org/10.1016/S0921-5093(98)00498-5
  5. V. C. Srivastava, A. Schneider and V. Uhlenwinkel: J. Mater. Proc. Tech., 147 (2004) 174. https://doi.org/10.1016/j.jmatprotec.2003.12.013
  6. D. Zhao, Q. M. Dong, P. Liu, B. X. Kang, J. L. Huang and Z. H. Jin: Mater. Sci. Eng. A, A361 (2003) 93.
  7. B. Cantor, K. H. Baik and P. S. Grant: Prog. Mater. Sci., 42 (1997) 373. https://doi.org/10.1016/S0079-6425(97)00033-9
  8. P. S. Grant : Prog. Mater. Sci., 39 (1995) 497. https://doi.org/10.1016/0079-6425(95)00004-6
  9. K. H. Baik, P. S. Grant and B. Cantor: Acta Materialia, 52 (2004) 199. https://doi.org/10.1016/j.actamat.2003.09.006
  10. K. H. Baik, H. S. Kang and H. K. Seok: J. Kor. Inst. Met. Mater., 44 (2006) 329 (Korean).
  11. J. D. Hwang, B. J. Li, W. S. Hwang and C. T. Hu: J. Mater. Eng. Perform., 7 (1998) 495. https://doi.org/10.1361/105994998770347648
  12. F. Kohler, L. Germond, J. D. Wagniere and M. Rappaz, Acta Mater., 57 (2009) 56. https://doi.org/10.1016/j.actamat.2008.08.058