DOI QR코드

DOI QR Code

Microstructural Evolution and Tensile Properties of Cu-Sn Based Alloys Manufactured by Spray Casting Route

분무주조에 의해 제조된 Cu-Sn계 합금의 미세조직 및 인장성질

  • Shim, Sang-Hyun (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Kang, Hee-Soo (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Baik, Kyeong-Ho (Department of Nanomaterials Engineering, Chungnam National University)
  • 심상현 (충남대학교 나노소재공학과) ;
  • 강희수 (충남대학교 나노소재공학과) ;
  • 백경호 (충남대학교 나노소재공학과)
  • Received : 2010.11.01
  • Accepted : 2010.12.07
  • Published : 2010.12.28

Abstract

Cu-Sn based alloys were manufactured by gas atomization spray casting route in order to achieve a fine scale microstructure and a high tensile strength. The spray cast Cu-10Sn-2Ni-0.2Si alloy had an equiaxed grain microstructure, with no formation of brittle ${\delta}-Cu_{41}Sn_{11}$ phase. Aging treatment promoted the precipitation of finely distributed particles corresponding to ${\delta}-Ni_2Si$ intermetallic phase throughout the $\alpha$-(CuSn) matrix. The cold-rolled Cu-Sn-Ni-Si alloy had a very high tensile strength of 1200 MPa and an elongation of 5%. Subsequent aging treatment at $450^{\circ}C$ for 1h slightly reduced the tensile strength to 700 MPa and remarkably increased the elongation up to 30%. This result has been explained by coarsening the precipitates due to over aging and reducing the dislocation density due to annealing effects.

Keywords

References

  1. W. A. Soffa and D. E. Laughlin: Prog. Mater. Sci., 49 (2004) 347. https://doi.org/10.1016/S0079-6425(03)00029-X
  2. S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki and Y. Waseda: J. Alloys Compounds, 417 (2006) 116. https://doi.org/10.1016/j.jallcom.2005.09.037
  3. J. C. Zhao and M. R. Notis: Acta Materialia, 46 (1998) 4203. https://doi.org/10.1016/S1359-6454(98)00095-0
  4. P. Virtanen, T. Tiainen and T. Lepisto: Mater. Sci. Eng. A, 251 (1998) 269. https://doi.org/10.1016/S0921-5093(98)00498-5
  5. V. C. Srivastava, A. Schneider and V. Uhlenwinke: J. Mater. Proc. Tech., 147 (2004) 174. https://doi.org/10.1016/j.jmatprotec.2003.12.013
  6. D. Zhao, Q. M. Dong, P. Liu, B. X. Kang, J. L. Huang and Z. H. Jin: Mater. Sci. Eng. A, A361 (2003) 93.
  7. B. Cantor, K. H. Baik and P. S. Grant: Prog. Mater. Sci., 42 (1997) 373. https://doi.org/10.1016/S0079-6425(97)00033-9
  8. P. S. Grant: Prog. Mater. Sci., 39 (1995) 497. https://doi.org/10.1016/0079-6425(95)00004-6
  9. K. H. Baik, P. S. Grant and B. Cantor: Acta Materialia, 52 (2004) 199. https://doi.org/10.1016/j.actamat.2003.09.006
  10. K. H. Baik, H. S. Kang and H. K. Seok: J. Kor. Inst. Met. Mater., 44 (2006) 329.