DOI QR코드

DOI QR Code

One-step Physical Method for Synthesis of Cu Nanofluid in Ethylene Glycol

  • Bac, L.H. (School of Materials Science Engineering, University of Ulsan) ;
  • Yun, K.S. (School of Materials Science Engineering, University of Ulsan) ;
  • Kim, J.S. (School of Materials Science Engineering, University of Ulsan) ;
  • Kim, J.C. (School of Materials Science Engineering, University of Ulsan) ;
  • Rhee, C.K. (Korean Atomic Energy Research Institute)
  • Received : 2010.11.05
  • Accepted : 2010.12.02
  • Published : 2010.12.28

Abstract

The Cu nanofluid in ethylene glycol was prepared by electrical explosion of wire, a novel one-step method. The X-ray diffraction, field emission scanning electron microscope and transmission electron microscope were used to study the properties of Cu nanoparticles. The results showed that the nanoparticles were consisted of pure face-centered cubic structure and near spherical shape with average grain size of 65 nm. Ultraviolet-visible spectroscopy (UV-Vis) confirmed Cu nanoparticles with a single absorbance peak of Cu surface plasmon resonance band at 600 nm. The nanofluid was found to be stable due to high positive zeta potential value, +51 mV. The backscattering level of nanofluid in static stationary was decreased about 2% for 5 days. The thermal conductivity measurement showed that Cu-ethylene glycol nanofluid with low concentration of nanoparticles had higher thermal conductivity than based fluid. The enhancement of thermal conductivity of nanofluid at a volume fraction of 0.1% was approximately 5.2%.

Keywords

References

  1. S. U. S. Choi: American Society of Mechanical Engineers, Developments and Applications of Non-Newtonian Flows FED, 231 (1995) 99.
  2. K. Kwak and C. Kim: Korea-Australia Rheology Journal, 17 (2005) 63.
  3. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson: Appl. Phys. Lett., 78 (2001) 718. https://doi.org/10.1063/1.1341218
  4. H. T. Zhu, Y. S. Lin and Y. S. Yin: J. Colloid Interface Sci., 277 (2004) 100. https://doi.org/10.1016/j.jcis.2004.04.026
  5. M. S. Liu, M. C. C. Lin, C. Y. Tsai and C. C. Wang: Int. J. Heat Mass Transfer, 49 (2006) 3028. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.012
  6. Yu A. Kotov: J. Nanopart. Res., 5 (2003) 539. https://doi.org/10.1023/B:NANO.0000006069.45073.0b
  7. Y. S. Kwon, Y. H. Jung, N. A. Yavorovsky, A. P. Illyn and J. S. Kim: Scripta Mater., 44 (2001) 2247. https://doi.org/10.1016/S1359-6462(01)00757-6
  8. K. Murai, Y. Tokoi, H. Suematsu, W. Jiang, K. Yatsui and K Niihara: Jpn. J. Appl. Phys., 47 (2008) 3726. https://doi.org/10.1143/JJAP.47.3726
  9. C. Cho, Y. W. Choi, C. Kang and G. W. Lee: Appl. Phys. Lett., 91 (2007) 141501. https://doi.org/10.1063/1.2794724
  10. N. Arul Dhas, C. Paul Raj and A. Gedanken: Chem. Mater., 10 (1998) 1446. https://doi.org/10.1021/cm9708269
  11. D. Mott, J. Galkowski, L. Wang, J. Luo, and C. J. Zhong: Langmuir, 23 (2007) 5740. https://doi.org/10.1021/la0635092
  12. S. H. Wu and D. H. Chen: J. colloid Interface Sci., 273 (2004) 165. https://doi.org/10.1016/j.jcis.2004.01.071
  13. S. M. S. Murshed, K. C. Leong,and C. Yang: Nanosci. Nanotechnol., 8 (2008) 5966. https://doi.org/10.1166/jnn.2008.329
  14. Sarit K. Das, Stephen U. Choi, Wenhua Yu and T. Pradeep: Nanofluids: Science and Technology, John Wiley and Sons Inc., New York (2007).
  15. Y. Hwang, J. K. Lee, J. K. Lee, Y. M. Jeong, S. I. Cheong, Y. C. Ahn and S. H. Kim: Powder Technol., 186 (2008) 145. https://doi.org/10.1016/j.powtec.2007.11.020
  16. X. F. Li, D. S. Zhu, X. J. Wang, N. Wang, J. W. Gao and H. Li: Thermochim. Acta, 469 (2008) 98. https://doi.org/10.1016/j.tca.2008.01.008
  17. Y. Li, J. E. Zhou, S. Tung, E. Schneider and S. Xi: Powder Technol., 196 (2009) 89. https://doi.org/10.1016/j.powtec.2009.07.025

Cited by

  1. Electroexplosive Technology of Nanopowders Production: Current Status and Future Prospects vol.19, pp.1, 2012, https://doi.org/10.4150/KPMI.2012.19.1.040
  2. Effect of Electrical Parameters and Surrounding Gas on the Electroexplosive Tungsten Nanopowders Characteristics vol.19, pp.1, 2012, https://doi.org/10.4150/KPMI.2012.19.1.049
  3. Characterization and Stability of Silver Nanoparticles in Aqueous Solutions vol.19, pp.1, 2012, https://doi.org/10.4150/KPMI.2012.19.1.055