Brazilin Inhibits of TPA-induced MMP-9 Expression Via the Suppression of NF-${\kappa}B$ Activation in MCF-7 Human Breast Carcinoma Cells

  • Kim, Byeong-Soo (Department of Companion and Laboratory Animal Science, Kongju National University)
  • Received : 2010.06.24
  • Accepted : 2010.07.11
  • Published : 2010.09.30

Abstract

Metastasis is the primary cause of from breast cancer mortality. Cell migration and invasion play important roles in neoplastic metastasis. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. NF-${\kappa}B$ is transcription factor important in the regulation of MMP-9, as the promoter of MMP-9 gene contains binding sites for NF-${\kappa}B$. Brazilin, an active component of sappan wood (Caesalpinia sappan), decreases TPA-induced MMP-9 expression and invasion in MCF-7 cells. Also, brazilin suppressed NF-${\kappa}B$ activation in TPA-treated MCF-7 cells. Taken together, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by brazilin is mediated by the suppression of the NF-${\kappa}B$ pathway in MCF-7 cells. This result suggest brazilin provide a potential therapeutic app roach for the treatment of breast cancer.

Keywords

References

  1. Puchtler, H. and Sweat, F.: On the mechanism of sequence iron-hematein stains. Histochemie, 4, 197-208 (1964). https://doi.org/10.1007/BF00290864
  2. Puchtler, H., Meloan, S.N. and Waldrop, F.S.: Application of current chemical concepts to metal-hematein and -brazilein stains. Histochemistry, 85, 353-364 (1986). https://doi.org/10.1007/BF00982665
  3. Moon, C.K., Park, K.S., Kim, S.G., Won, H.S. and Chung, J.H.: Brazilin protects cultured rat hepatocytes from BrCCl3-induced toxicity. Drug Chem Toxicol, 15, 81-91 (1992). https://doi.org/10.3109/01480549209035174
  4. Hwang, G.S., Kim, J.Y., Chang, T.S., Jeon, S.D., So, D.S. and Moon, C.K.: Effects of Brazilin on the phospholipase A2 activity and changes of intracellular free calcium concentration in rat platelets. Arch Pharm Res, 21, 774-778 (1998). https://doi.org/10.1007/BF02976775
  5. Kim, S.G., Kim, Y.M., Khil, L.Y., Jeon, S.D., So, D.S., Moon, C.H. and Moon, C.K.: Brazilin inhibits activities of protein kinase C and insulin receptor serine kinase in rat liver. Arch Pharm Res, 21, 140-146 (1998). https://doi.org/10.1007/BF02974018
  6. Choi, S.Y. and Moon, C.K.: Effects of brazilin on the altered immune functions in the early phase of halothane intoxication of C57BL/6 mice. Planta Med, 63, 400-404 (1997). https://doi.org/10.1055/s-2006-957721
  7. Mok, M.S., Jeon, S.D., Yang, K.M., So, D.S. and Moon, C.K.: Effects of Brazilin on induction of immunological tolerance by sheep red blood cells in C57BL/6 female mice. Arch Pharm Res, 21, 769-773 (1998). https://doi.org/10.1007/BF02976774
  8. Hikino, H., Taguchi, T., Fujimura, H. and Hiramatsu, Y.: Anti-inflammatory principles of Caesalpinia sappan wood and of Haematoxylon campechianum wood. Planta Med, 31, 214-220 (1977). https://doi.org/10.1055/s-0028-1097516
  9. Bae, I.K., Min, H.Y., Han, A.R., Seo, E.K. and Lee, S.K.: Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur J Pharmacol, 513, 237-242 (2005). https://doi.org/10.1016/j.ejphar.2005.03.011
  10. Sasaki, Y., Hosokawa, T., Nagai, M. and Nagumo, S.: In vitro study for inhibition of NO production about constituents of Sappan Lignum. Biol Pharm Bull, 30, 193-196 (2007). https://doi.org/10.1248/bpb.30.193
  11. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J. and Thun, M.J.: Cancer statistics, 2005. CA Cancer J Clin, 55, 10-30 (2005). https://doi.org/10.3322/canjclin.55.1.10
  12. Friedel, G., Pastorino, U., Ginsberg, R.J., Goldstraw, P., Johnston, M., Pass, H., Putnam, J.B. and Toomes, H.: Results of lung metastasectomy from breast cancer: prognostic criteria on the basis of 467 cases of the International Registry of Lung Metastases. Eur J Cardiothorac Surg, 22, 335-344 (2002). https://doi.org/10.1016/S1010-7940(02)00331-7
  13. Woessner, J.F., Jr.: Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J, 5, 2145-2154 (1991).
  14. Nakajima, M., Welch, D.R., Belloni, P.N. and Nicolson, G.L.: Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials. Cancer Res, 47, 4869-4876 (1987).
  15. Saito, N., Hatori, T., Murata, N., Zhang, Z.A., Ishikawa, F., Nonaka, H., Iwabuchi, S. and Samejima, H.: A double threestep theory of brain metastasis in mice: the role of the pia mater and matrix metalloproteinases. Neuropathol Appl Neurobiol, 33, 288-298 (2007). https://doi.org/10.1111/j.1365-2990.2007.00799.x
  16. Castellano, G., Malaponte, G., Mazzarino, M.C., Figini, M., Marchese, F., Gangemi, P., Travali, S., Stivala, F., Canevari, S. and Libra, M.: Activation of the osteopontin/matrix metalloproteinase-9 pathway correlates with prostate cancer progression. Clin Cancer Res, 14, 7470-7480 (2008). https://doi.org/10.1158/1078-0432.CCR-08-0870
  17. Kanayama, H.: Matrix metalloproteinases and bladder cancer. J Med Invest, 48, 31-43 (2001).
  18. Lin, C.W., Hou, W.C., Shen, S.C., Juan, S.H., Ko, C.H., Wang, L.M. and Chen, Y.C.: Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis, 29, 1807-1815 (2008). https://doi.org/10.1093/carcin/bgn162
  19. Lee, S.O., Jeong, Y.J., Kim, M., Kim, C.H. and Lee, I.S.: Suppression of PMA-induced tumor cell invasion by capillarisin via the inhibition of NF-kappaB-dependent MMP-9 expression. Biochem Biophys Res Commun, 366, 1019-1024 (2008). https://doi.org/10.1016/j.bbrc.2007.12.068
  20. Nabeshima, K., Inoue, T., Shimao, Y. and Sameshima, T.: Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int, 52, 255-264 (2002). https://doi.org/10.1046/j.1440-1827.2002.01343.x
  21. Eberhardt, W., Huwiler, A., Beck, K.F., Walpen, S. and Pfeilschifter, J.: Amplification of IL-1 beta-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kappa B and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. J Immunol, 165, 5788-5797 (2000).
  22. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3
  23. Chambers, A.F. and Matrisian, L.M.: Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst, 89, 1260-1270 (1997). https://doi.org/10.1093/jnci/89.17.1260
  24. Stetler-Stevenson, W.G., Hewitt, R. and Corcoran, M.: Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic. Semin Cancer Biol, 7, 147-154 (1996). https://doi.org/10.1006/scbi.1996.0020
  25. Chung, T.W., Moon, S.K., Chang, Y.C., Ko, J.H., Lee, Y.C., Cho, G., Kim, S.H., Kim, J.G. and Kim, C.H.: Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J, 18, 1670-1681 (2004). https://doi.org/10.1096/fj.04-2126com
  26. Scorilas, A., Karameris, A., Arnogiannaki, N., Ardavanis, A., Bassilopoulos, P., Trangas, T. and Talieri, M.: Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negative patients. Br J Cancer, 84, 1488-1496 (2001). https://doi.org/10.1054/bjoc.2001.1810
  27. Cho, H.J., Kang, J.H., Kwak, J.Y., Lee, T.S., Lee, I.S., Park, N.G., Nakajima, H., Magae, J. and Chang, Y.C.: Ascofuranone suppresses PMA-mediated matrix metalloproteinase-9 gene activation through the Ras/Raf/MEK/ERK- and Ap1-dependent mechanisms. Carcinogenesis, 28, 1104-1110 (2007).
  28. Kajanne, R., Miettinen, P., Mehlem, A., Leivonen, S.K., Birrer, M., Foschi, M., Kahari, V.M. and Leppa, S.: EGF-R regulates MMP function in fibroblasts through MAPK and AP- 1 pathways. J Cell Physiol, 212, 489-497 (2007). https://doi.org/10.1002/jcp.21041
  29. Srivastava, A.K., Qin, X., Wedhas, N., Arnush, M., Linkhart, T.A., Chadwick, R.B. and Kumar, A.: Tumor necrosis factor-alpha augments matrix metalloproteinase-9 production in skeletal muscle cells through the activation of transforming growth factor-beta-activated kinase 1 (TAK1)-dependent signaling pathway. J Biol Chem, 282, 35113-35124 (2007). https://doi.org/10.1074/jbc.M705329200
  30. Yamamoto, Y. and Gaynor, R.B.: Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest, 107, 135-142 (2001). https://doi.org/10.1172/JCI11914
  31. Hong, S., Park, K.K., Magae, J., Ando, K., Lee, T.S., Kwon, T.K., Kwak, J.Y., Kim, C.H. and Chang, Y.C.: Ascochlorin inhibits matrix metalloproteinase-9 expression by suppressing activator protein-1-mediated gene expression through the ERK1/2 signaling pathway: inhibitory effects of ascochlorin on the invasion of renal carcinoma cells. J Biol Chem, 280, 25202-25209 (2005). https://doi.org/10.1074/jbc.M413985200
  32. Washiyama, M., Sasaki, Y., Hosokawa, T. and Nagumo, S.: Anti-inflammatory constituents of Sappan Lignum. Biol Pharm Bull, 32, 941-944 (2009). https://doi.org/10.1248/bpb.32.941