DOI QR코드

DOI QR Code

An Electro-magnetic Air Spring for Vibration Control in Semiconductor Manufacturing

반도체 생산에서 진동 제어를 위한 전자기 에어 스프링

  • 김형태 (한국생산기술연구원) ;
  • 김철호 (한국생산기술연구원 생산시스템연구부) ;
  • 이강원 (한국생산기술연구원) ;
  • 이규섭 (알엠에스테크놀러지(주)) ;
  • 손성완 (알엠에스테크놀러지(주))
  • Received : 2010.08.12
  • Accepted : 2010.10.26
  • Published : 2010.12.20

Abstract

One of the typical problems in the precise vibration is resonance characteristics at low frequency disturbance due to a heavy mass. An electro-magnetic(EM) air spring is a kind of vibration control unit and active isolator. The EM air spring in this study aims at removing the low frequency resonance for semiconductor manufacturing. The mechanical and electronic parts in the active isolator are designed to operate under a weight of 2.5 tons. The EM spring is floated using air pressure in a pneumatic elastic chamber and actuated by EM levitation force. The actuator consists of a EM coil and a permanent magnetic plate which are installed inside of the chamber. An air mount was constructed for the experiment with a stone surface plate, 4 active air springs, 4 gap sensors, a DSP controller, and a multi-channel power amp. A PD control method and operating logic was applied to the DSP. Simulation using 1/4 model was carried out and compared with the experiments. The time duration and maximum peak at resonance frequency can be reduced sharply by the proposed system. The results show that the active system can avoid the resonance caused by the natural frequency of the passive system.

정밀 방진에서 전형적인 문제로 고하중으로 인한 저주파 공진 특성이 있다. 전자기 에어 스프징은 진동 제어 장치이자 능동형 방진 장치이다. 이 연구에서 전자기 에어 스프링은 반도체 생산을 위한 저주파 공진을 제거하는 것을 목적으로 한다. 능동형 방진 장치로 기계 및 전가 부분은 2.5톤의 하 중에 작동되도록 설계하였다. 전자기 스프링은 탄성 공압 챔버 내에 공기압을 이용하여 띄우고, 전자기 된 시스템에 의하면 공진 주파수 영역에서 제어 시간 및 최고 피크가 상당히 줄어들었고, 그 결과 피동형 시스템 상의 고유 진동에 의해 발생되는 공진을 피할 수 있음을 보였다.

Keywords

References

  1. Kato, T., Kawashima, K., Sawamoto, K. and Kagawa, T., 2007, “Active Control of a Pneumatic Isolation Table Using Model Following Control and a Pressure Differentiator,” Precision Engineering, Vol. 31, No. 3, pp. 269-275. https://doi.org/10.1016/j.precisioneng.2006.11.004
  2. Shin, Y. H. and Kim, K. J., 2009, “Performance Enhanced of Pneumatic Vibration Isolation Tables in Low Frequency Range by Time Delay Control,” Journal of Sound and Vibration, Vol. 321, No. 3-5, pp. 537-553. https://doi.org/10.1016/j.jsv.2008.10.030
  3. Thanh, T. Q. and Kwan, A. K., 2008, “An Application of the Novel Linear Magnetic Actuator to Controllable Squeeze Film Damper,” Proceedings of the International Conference on Smart Manufacturing Application, pp. 276-281.
  4. Han, D. K. and Chang, P. H., 2007, “A Robust Two-time-scale Control Design for a Pneumatic Vibration Isolator,” IEEE Conference on Decision and Control, pp. 1666-1672.
  5. Tomonori, K., Kenji, K., Tatsuya, F., Laksana, G. H. and Toshiharu, K., 2007, “Active Control of a Pneumatic Vibration Isolation Table using a Newly Developed Precise and High Response Pressure Regulator,” IEEE 22nd International Symposium on Intelligent Control, pp. 497-502.
  6. Fei, H. Z., Zheng, G. T. and Liu, Z. G., 2006, “An Investigation Into Active Vibration Isolation Based on Predictive Control: Part I: Energy Source Control,” Journal of Sound and Vibration, Vol. 296, No. 1-2, pp. 195-208. https://doi.org/10.1016/j.jsv.2006.02.021
  7. Mizuno, T., Murashita, M., Takasaki, M. and Ishino, Y., 2005, “Pneumatic Three-axis Vibration Isolation System Using Negative Stiffness,” IEEE Conference on Decision and Control-European Control Conference. pp. 8254-8259.
  8. Bogatchenkov, A. H., Goverdovskiy, V. N., Temnikov, A. I. and Lee, C. M., 2003, “Vibration Control System with Opened Kinematic Chain and Elastic Links of Small Stiffness,” Proceedings of Korea-Russia International Symposium on Science and Technology, Vol 1, pp. 285-289.
  9. Erin, C., Wilson, B. and Zapfe, J., 1998, “An Improved Model of a Pneumatic Vibration Isolator: Theory and Experiment,” Journal of Sound and Vibration, Vol. 218, No. 1, pp. 81-101. https://doi.org/10.1006/jsvi.1998.1777
  10. Jones, D. and Owen, R., 1984, “A Magnetically Levitated Anti-vibration Mount,” IEEE Transactions on Magnetics, Vol. 20, No. 5, pp. 1687-1689. https://doi.org/10.1109/TMAG.1984.1063309
  11. Hoque, M. D., Takasaki, E. M., Ishino, Y. and Mizuno, T., 2006, “Development of a Three-axis Active Vibration Isolator Using Zero-power Control,” IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 4, pp. 462-470. https://doi.org/10.1109/TMECH.2006.878536
  12. Mizno, T., Takasaki, M., Kishita, D., Hirakawa, K., 2007, “Vibration Isolation System Combining Zero-power Magnetic Suspension with Springs,” Control Engineering Practice, Vol. 15, pp. 187-196. https://doi.org/10.1016/j.conengprac.2006.06.001
  13. Unsal, M., Niezrecki, C. and Crane, C., 2004, “Two Semi-active Approaches for Vibration Isolation: Piezoelectric Friction Damper and Magnetorheological Damper,” Proceedings of the IEEE International Conference on Mechatronics, pp. 60-65.
  14. Firestone Industrial Products Company, Selection Guides for Airmount isolators, Indianapolis, Indiana.
  15. Amick, H., Gendreau, M., Busch, T. and Gordon, C., 2007, “Evolving Criteria for Research facilities : I-Vibration,” Reprinted from Proceedings of SPIE Conference 5933 : Buildings for Nanoscale Research and Beyond, pp. 1-13.

Cited by

  1. Lateral vibration control of a precise machine using magneto-rheological mounts featuring multiple directional damping effect vol.27, pp.3, 2018, https://doi.org/10.1088/1361-665X/aaad9e