• Title/Summary/Keyword: Active Vibration Control

Search Result 1,031, Processing Time 0.035 seconds

A Study on Active Vibration Isolation Using Electro-Magnetic Actuator (전자기력을 이용한 능동제진에 관한 연구)

  • 손태규;김규용;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1169-1181
    • /
    • 1994
  • Vibration isolation of mechanical systems, in general, is achieved through passive or active vibration isolators. Passive vibration isolator has an inherenrt performance limitation. Whereas, active vibration isolator provides significantly superior vibration-isolation performance at the cost of energy sources and sensors. Recently, in many cases, such as suspension system, precision machinery ... etc, active isolation system outweighs its limitation. Therefore, many studies, researches, and applications are carried out in this field. In this study, vibration-isolation characteristics of an active vibration control system using electromagnetic force actuator are investigated. Several control algorithms including optimal, feedforward are used for active vibration isolation. From the experimental results of each algorithm, effective control algorithms for this active vibration-isolation system are proposed.

전자기력을 이용한 능동제진

  • 손규태;유원희;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.179-183
    • /
    • 2001
  • Vibration isolation of mechanical systems, in general is achieved through either passive or active vibration control system. Although passive vibration isolators offer simple and reliable means to protect mechanical system from vibration environment, passive vibration isolator has inherent performance limitation. Whereas, active vibration isolator provide significantly superior vibration-isolation performance. Recently, many studied and applications are carried out in this field. In this study, vibration-isolation characteristics of active vibration control system using electromagnetic force actuator are investigated. Some control algorithms. Optimal Feedforward are used for active vibration isolation. Form the experimental results of each control algorithms, active vibration isolation characteristics are investigated.

Study on active vibration control based on wave viewpoint using the longitudinal wave separation method (종파 분리 방법을 이용한 파동 관점의 능동 진동 제어)

  • Jung, Byung-Bo;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.928-933
    • /
    • 2007
  • In this research, we investigated active vibration control based on wave-viewpoint using the longitudinal wave separation method. The control strategy is the one of active vibration control technique for generating vibration reduced zone and uses wave information including the directivity as the cost function. In order to get the wave information from the measured values, we proposed and examined the time-domain longitudinal wave separation method proper to real time application like active vibration control. Using the proposed method, we examine the performance and feasibility of active vibration control based wave view-point through the simulation. The related experimental verification and application is going to be expected in a near future.

  • PDF

Dynamic Characteristics of ALA and Active Vibration Control Experiment (ALA 동적 특성 및 능동진동제어 실험)

  • Lee, Han-Dong;Kwak, Moon-K.;Kim, Jeong-Hoon;Song, Yoon-Chul;Shim, Jae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.781-787
    • /
    • 2009
  • This research is concerned with the application of the active linear actuator to the active vibration control of structure. The active linear actuator will be mounted on the sub-frame so that it can cancel the excitation transferred from the engine. Accelerometer mounted on the sub-frame detects the vibration and its signal is fed into the DSP controller where the control algorithm is installed. The output of the DSP controller is connected to the driver which amplifies the DSP output. In general, the pulse width modulation power amplifier is used to drive the voice-coil type actuator. This study shows the dynamic characteristics of the active linear actuator and active vibration control experimental results.

Dynamic characteristics of ALA and Active Vibration Control Experiment (ALA 동적 특성 및 능동진동제어 실험)

  • Lee, Han-Dong;Kwak, Moon-K.;Kim, Jeong-Hoon;Song, Yoon-Chul;Shim, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.639-644
    • /
    • 2009
  • This research is concerned with the application of the active linear actuator to the active vibration control of structure. The active linear actuator will be mounted on the sub-frame so that it can cancel the excitation transferred from the engine. Accelerometer mounted on the sub-frame detects the vibration and its signal is fed into the DSP controller where the control algorithm is installed. The output of the DSP controller is connected to the driver which amplifies the DSP output. In general, the pulse width modulation power amplifier is used to drive the voice-coil type actuator. This study shows the dynamic characteristics of the active linear actuator and active vibration control experimental results.

  • PDF

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

Experimental System of Active control for Building Structures (구조물의 능동제어 실험을 위한 시스템 구성)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.274-285
    • /
    • 1998
  • Increasing flexibility and lightness of recently built high-rise buildings make the structures susceptible to loads such as earthquakes and winds. Therefore, higher performance vibration control systems to reduce the vibration levels are demanded more than any time in the past. One of typical active vibration control systems is the active mass damper(AMD). In this paper, an active vibration control system consisting of small shaking table, building model, sensors, signal processing board and AMD is constructed. The dynamic characteristics of these individual systems are investigated through the experimental study. The performance of the active vibration control system is verified through harmonic resonant load excitation on building model.

  • PDF

Development of Linear Magnetic Actuator for Active Vibration Control (능동진동제어를 위한 선형 자기 액츄에이터 개발)

  • Lee, Haeng-Woo;Kwak, Moon-K.;Kim, Ki-Young;Lee, Han-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.587-592
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.

  • PDF

Analysis and active control for wind induced vibration of beam with ACLD patch

  • Li, Jinqiang;Narita, Yoshihiro
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-417
    • /
    • 2013
  • The structural vibration suppression with active constrained layer damping (ACLD) was widely studied recently. However, the literature seldom concerned with the vibration control on flow-induced vibration using active constrained layer. In this paper the wind induced vibration of cantilevered beam is analyzed and suppressed by using random theory together with a velocity feedback control strategy. The piezoelectric material and frequency dependent viscoelastic layer are used to achieve effective active damping in the vibration control. The transverse displacement and velocity in time and frequency domains, as well as the power spectral density and the mean-square value of the transverse displacement and velocity, are formulated under wind pressure at variable control gain. It is observed from the numerical results that the wind induced vibration can be significantly suppressed by using a small outside active voltage on the constrained layer.

Active Vibration Control Method Using Frequency Controllable Piezoelectric Transducer (주파수가변 압전 트랜스듀서를 이용한 능동제진법)

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol;Kang, Sung-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1E
    • /
    • pp.27-32
    • /
    • 2007
  • Hydraulic actuator and electro-magnetic liner actuator have been used as typical active vibration control methods. However these methods have many kinds of disadvantages such as causing space limit, difficult maintenance, complicate structures, etc. The purpose of this paper was to study on the possibility of active vibration control using piezoelectric transducer. Piezoelectric transducer generated a vibration and GIC (General Impedance Converter) amplifier was adopted to give adjustable vibration signal to transducer and high amplitude of vibration. Resonance frequency of piezoelectric transducer was controlled by GIC amplifier and higher amplitude of vibration was achieved. Finally active vibration control using piezoelectric transducer was performed.