References
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327 https://doi.org/10.1016/0304-4076(86)90063-1
- Gunn, S. (1998). Support vector machines for classification and regression, ISIS Technical Report, Uni-versity of Southampton
- Hwang, C. and Shim, J. (2005). A simple quantile regression via support vector machine, Lecture Notes in Computer Science, 3610, 512-520 https://doi.org/10.1007/11539087_66
- Jorion, P. (2007). Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, New York
- Koenker, R. and Bassett, G. (1978). Regression quantiles, Econometrica, 46, 33-50 https://doi.org/10.2307/1913643
- Mercer, J. (1909). Functions of positive and negative type, and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London. Series A, 299, 415-446 https://doi.org/10.1098/rsta.1909.0016
- Nychka, D., Gray, G., Haaland, P., Martin, D. and O’Connell, M. (1995). A nonparametric regression approach to syringe grading for quality improvement, Journal of the American Statistical Association, 90, 1171-1178 https://doi.org/10.2307/2291509
- Ozun, A. and Cifter, A. (2007). Nonlinear combination of financial forecast with genetic algorithm, MPRA Paper, No.2488
- Palit, A. K. and Popovic, D. (2000). Nonlinear combination of forecasts using artificial neural network, fuzzy logic and neuro-fuzzy approach, FUZZ-IEEE, 2, 566-571 https://doi.org/10.1109/FUZZY.2000.839055
- Seok, K., Hwang, C. and Cho, D. (1999). Kernel adatron algorithm for support vector regression, Commu-nications of the Korean Statistical Society, 6, 843-847
- Shim, J., Hwang, C. and Hong, D. H. (2009). Fuzzy semiparametric support vector regression for seasonal time series analysis, Communications of the Korean Statistical Society, 16, 335-348 https://doi.org/10.5351/CKSS.2009.16.2.335
- Smola, A. J. and Scholkopf, B. (1998). A tutorial on support vector regression, NeuroCOLT2 Technical Report, NeuroCOLT
- Vapnik, V. N. (1998). Statistical Learning Theory, Springer
- Yuan, M. (2006). GACV for quantile smoothing splines, Computational Statistics & Data Analysis, 50, 813-829 https://doi.org/10.1016/j.csda.2004.10.008