Abstract
The application of extreme value theory to financial data is a fairly recent innovation. The classical annual maximum method is to fit the generalized extreme value distribution to the annual maxima of a data series. An alterative modern method, the so-called threshold method, is to fit the generalized Pareto distribution to the excesses over a high threshold from the data series. A more substantial variant is to take the point-process viewpoint of high-level exceedances. That is, the exceedance times and excess values of a high threshold are viewed as a two-dimensional point process whose limiting form is a non-homogeneous Poisson process. In this paper, we apply the two-dimensional non-homogeneous Poisson process model to daily losses, daily negative log-returns, in the data series of KBW/USD exchange rate, collected from January 4th, 1982 until December 31 st, 2008. The main question is how to estimate extreme quantiles of losses such as the 10-year or 50-year return level.
금융자료에 극단값이론을 적용하는 것은 위험관리에서 중요한 최신 통계기법 중의 하나라고 할 수 있다. 극단값분석에서 전통적으로 사용해 오던 연간 최대값방법은 시계열자료의 연간 최대값들에 대하여 일반화 극단값분포를 적합시키는 것이고, 최근 대안으로 널리 사용되고 있는 분계점 방법은 시계열자료 중 충분히 큰 하나의 분계점을 넘어서는 초과값들에 대하여 일반화파레토분포를 적합시키는 것이다. 그러나, 보다 실질적인 방법은 분계점을 넘어서는 초과값들을 하나의 점과정으로 해석하는 것인데, 즉 초과값들의 초과시점과 초과여분을 점근적으로 비동질 포아송과정을 갖는 하나의 2차원 점과정으로 간주하는 것이다. 본 논문에서는 이러한 2차원 비동질 포아송과정 모형을 1982.1.4부터 2008.12.31까지 수집된 원/달러 환율 시계열자료로부터 계산된 일별 환율투자손실률, 즉 일별 로그 손실률에 적용한다. 여기서 주된 관심은 10년 혹은 50년에 한번 정도 발생하는 대형 손실률 수준과 같은 극단분위수를 어떻게 추정하느냐 하는 것이다.