DOI QR코드

DOI QR Code

전기영동법으로 알루미늄에 침적된 영가 철 나노입자에 의한 질산성 질소의 환원

Reduction of Nitrate-Nitrogen by Zero-valent Iron Nanoparticles Deposited on Aluminum yin Electrophoretic Method

  • 류원선 (홍익대학교 화학공학과)
  • Ryoo, Won (Department of Chemical Engineering, Hongik University)
  • 발행 : 2009.09.30

초록

최근 주요 수질오염 물질로 대두되고 있는 질산성 질소의 제거를 목적으로 영가 철 나노입자에 의한 질산성 질소의 환원반응성을 평가하였다. 영가 철 나노입자의 제조방법에 따른 반응성 차이를 규명하기 위해 유기용매 상에 계면활성제를 첨가하여 나노미터 크기 수준의 수용액 분산상에서 입자를 합성하는 마이크로에멀젼 방법과, 수용액 상의 철 이온을 환원시켜 입자를 합성하는 두 가지 방법으로 영가 철 나노입자를 합성하였다. 또한 전기영동법으로 알루미늄에 침적시킨 영가 철 나노입자에 의한 질산성 질소 제거속도를 측정하고, 고정화되지 않은 나노 철 입자에 의한 반응속도와 비교하였다. 환원반응을 질산성 질소에 대한 1차 반응으로 가정하여 수용액 방법 및 마이크로에멀전 방법으로 제조된 영가 철 나노입자의 반응성을 평가한 결과, 반응속도상수는 각각 $1.40{\times}10^{-2}min^{-1}$$3.49{\times}10^{-2}min^{-1}$ 로서 비표면적에 비례하여 증가하였다. 알루미늄에 침적된 나노입자는 현탁된 나노입자의 반응과 비교하여 약 30% 감소된 반응속도를 보였으나, 과량의 질산성 질소가 존재하는 경우 나노 철의 단위 질량당 질산성 질소의 제거효율 면에서 더 우수한 특성을 보였다. 나노철 입자의 현탁액은 반응시간 30분 이내에 반응속도가 감소하는 경향을 보였으나, 알루미늄에 침적된 나노철 입자는 3시간 이상 활성을 유지하였으며, 최종 생성물로 기체 질소를 발생시키는 것을 확인하였다.

Reductive reactivity of zero-valent iron nanoparticles was investigated for removal of nitrate-nitrogen which is considered one of the major water pollutants. To elucidate the difference in reactivity between preparation methods, iron nanoparticles were synthesized respectively from microemulsion and aqueous solution of ferric ions. Iron nanoparticles prepared from microemulsion were deposited on aluminum by electrophoretic method, and their reaction kinetics was compared to that of the same nanoparticles suspended in aqueous batch reaction. With an approximation of pseudo-first-order reaction, rate constants for suspended nanoparticles prepared from microemulsion and dilute aqueous solution were $3.49{\times}10^{-2}min^{-1}$ and $1.40{\times}10^{-2}min^{-1}$, respectively. Iron nanoparticles supported on aluminum showed ca. 30% less reaction rate in comparison with the identical nanoparticles in suspended state. However, supported nanoparticles showed the superior effectiveness in terms of nitrate-nitrogen removal per zero-valent iron input especially when excess amounts of nitrates were present. Iron nanoparticles deposited on aluminum maintained reductive reactivity for more than 3 hours, and produced nitrogen gas as a final reduction product of nitrate-nitrogen.

키워드

참고문헌

  1. Eykholt, G. R., and Davenport, D. T., "Dechlorination of the Chloroacetaniline Herbicides Alachlor and Metolachlor by Iron Metal," Environ. Sci. Technol., 32, 1482-1487 (1998). https://doi.org/10.1021/es970678n
  2. Alowitz, M. J., and Scherer, M. M., "Kinetics of Nitrate, Nitrite, and Cr(VI) Reduction by Iron Metal," Environ. Sci. Technol., 36, 299-306 (2002). https://doi.org/10.1021/es011000h
  3. Huang, C. P., Wang, H. W., and Chiu, P. C, "Nitrate Reduction by Metallic Iron," Water Res., 32, 2257-2264 (1998). https://doi.org/10.1016/S0043-1354(97)00464-8
  4. http://www.korea.kr/expdoc/viewDocument.req?id=22645
  5. Kapoor, A., and Viraraghavan, T., "Nitrate Removal From Drinking Water-review," J. Environ. Eng., 23(5), 371-380 (1997).
  6. Zhang, H., Jin, Z. H., Han, L., and Qin, C. H., "Synthesis of Nanoscale Zero-valent Iron Supported on Exfoliated Graphite for Removal of Nitrate," Trans. Nonferr. Met. Soc. China, 16, S345-S349 (2006). https://doi.org/10.1016/S1003-6326(06)60207-0
  7. Yeon, K.-H., Lee, S., Lee, K, Park, Y.-M., Kang, S.-Y, Lee, J.-W., Choi, Y.-S., and Lee, S.-H., "Reduction of Nitrate-nitrogen by Zero-valent Iron Adhered in Mesoporous Silicas," J. Korean Soc. Water Wastewat., 21, 139-147 (2007).
  8. Park, H., Park, Y.-M., Oh, S.-K, Lee, S.-J., Choi, Y.-S., and Lee, S.-H., "Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution," Korean Chem. Eng. Res., 46(5), 1008-1012 (2008).
  9. Li, F., Vipulanandan, C, and Mohanty, K. K., "Microemulsion and Solution Approaches to Nanoparticle Iron Production for Degradation of Trichloroethylene," Colloid Surf A: Physicochem. Eng. Asp., 223, 103-112 (2003). https://doi.org/10.1016/S0927-7757(03)00187-0
  10. Yang, G. C. C, and Lee, H. L., "Chemical Reduction of Nitrate by Nanosized Iron: Kinetics and Pathways," Water Res., 39, 884-894 (2005). https://doi.org/10.1016/j.watres.2004.11.030
  11. Zulauf, M., and Eicke, H. F., "Inverted Micelles and Microemulsions in the Ternary System Water/Aerosol-OT/ Isooctane as Studied by Photon Correlation Spectroscopy," J. Phys. Chem., 83(4), 480-486 (1979). https://doi.org/10.1021/j100467a011
  12. Luo, K, Shi, N, Cong, H., and Sun, C, "Electrophoretic Deposition of Nickel, Iron and Aluminum Nanoparticles on Carbon Fibers," J. Sol. State Electrochem., 10(12), 1003-1007 (2006). https://doi.org/10.1007/s10008-005-0044-4
  13. Ishihara, T., Shimose, K, Kudo, T., Nishiguchi, H., Akbay, T., and Takita, Y, "Preparation of Yttria-stabilized Zirconia Thin Films on Strontium-doped $LaMnO_3$ Cathode Substrates via Electrophoretic Deposition for Solid Oxide Fuel Cells," J. Am. Ceram. Soc., 83(8), 1921-1927 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01491.x
  14. Sarkar, P., and Nicholson, P. S., "Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics," J. Am. Ceram. Soc., 79(8), 1987-2002 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08929.x
  15. Liou, Y. H., Lo, S. L., Lin, C. J., Kuan, W. H., and Weng, S. C, "Chemical Reduction of an Unbuffered Nitrate Solution Using Catalyzed and Uncatalyzed Nanoscale Iron Particles," J. Hazard. Mater., 127, 102-110 (2005). https://doi.org/10.1016/j.jhazmat.2005.06.029
  16. Choe, S., Chang, Y.-Y., Hwang, K.-Y., and Khim, J., "Kinetics of Reductive Denitrification by Nanoscale Zero-valent Iron," Chemosphere, 41, 1307-1311 (2000). https://doi.org/10.1016/S0045-6535(99)00506-8