DOI QR코드

DOI QR Code

Magnetotransport Properties of MnGeP2 Films

MnGeP2 박막의 자기수송 특성

  • Kim, Yun-Ki (Department of Electrophysics, Kwangwoon University) ;
  • Cho, Sung-Lae (Department of Physics, University of Ulsan) ;
  • J.B., Ketterson (Department of Physics & Astronomy, Northwestern University)
  • Published : 2009.08.31

Abstract

$MnGeP_2$ thin films grown on GaAs exhibit room-temperature ferromagnetism with $T_C{\sim}$320 K, based on both magnetization and resistance measurements. The coercive fields at 5, 250, and 300 K are 3870, 1380 and 155 Oe, respectively. The anomalous Hall effect was observed, indicating spin polarization of the carriers. Hysteresis has been observed in both magnetoresistance and Hall measurements. The current-voltage characteristics of a $MnGeP_2$ film grown on an n-type GaAs substrate display semiconducting behavior.

GaAs 기판 위에 증착된 $MnGeP_2$ 박막이 상온에서 강자성을 보임을 자기화 및 자기저항 측정을 통해 확인하였다. 강자성-상자성 전이 온도는 320 K 정도였고, 항자력장은 5, 250, 300 K에서 각각 3870, 1380, 155 Oe 정도였다. 전하 운반자가 스핀 편극되어 있음을 암시하는 비정상 홀 효과를 관측하였다. 자기장에 따른 자기저항과 홀 저항을 측정할 때 이력곡선이 나타남을 확인하였다. $MnGeP_2$ 박막과 n-형 GaAs 기판 사이에 I-V 측정을 통해 전형적인 p-n 다이오드 특성을 보임을 확인하였다.

Keywords

References

  1. J. K. Furdyna, J. Appl. Phys., 64, R29 (1988). https://doi.org/10.1063/1.341700
  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molna´r, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488 (2001).(Please refer to the other references for details:no.14) https://doi.org/10.1126/science.1065389
  3. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett., 69, 363 (1996). https://doi.org/10.1063/1.118061
  4. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature, 402, 790 (1999). https://doi.org/10.1038/45509
  5. S. Datta and B. Das, Appl. Phys. Lett., 56, 665 (1990). https://doi.org/10.1063/1.102730
  6. G. A. Prinz, Phys. Today, 48(4), 58 (1995). https://doi.org/10.1063/1.881459
  7. N. C. Giles and L. E. Halliburton, MRS Bulletin, 23, 37 (1998).
  8. B. H. Bairamov, V. Yu. Rud', Yu. V. Ru', MRS Bulletin, 23, 41 (1998). https://doi.org/10.1557/S0883769400029080
  9. G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, and K. Sato, Jpn. J. Appl. Phys., 39, L949 (2000). https://doi.org/10.1143/JJAP.39.L949
  10. S. Choi, G.-B. Cha, S. C. Hong, S. Cho, Y. Kim, J. B. Ketterson, S.-Y. Jeong, and G.-C. Yi, Solid Sate Commun., 122, 165 (2002). https://doi.org/10.1016/S0038-1098(02)00094-7
  11. S. Cho, S. Choi, G.-B. Cha, S. C. Hong, Y. Kim, Y.-J. Zhao, A. J. Freeman, J. B. Ketterson, B. J. Kim, Y. C. Kim, and B.-C. Choi, Phys. Rev. Lett., 88, 257203 (2002). https://doi.org/10.1103/PhysRevLett.88.257203
  12. R. C. O'Handley, Modern Magnetic Materials: Principles and Applications (John Wiley & Sons, Inc., 2000)
  13. H. Ohno, in Semiconductor Spintronics and Quantum Computation, edited by D. D. Awschalom, D. Loss and N. Samarth, (Springer, 2002) pp. 6-11
  14. G. A. Prinz, Science, 282, 1660 (1998). https://doi.org/10.1126/science.282.5394.1660