DOI QR코드

DOI QR Code

COMPLEXITY ANALYSIS OF IPM FOR $P_*(\kappa)$ LCPS BASED ON ELIGIBLE KERNEL FUNCTIONS

  • Kim, Min-Kyung (Department of Mathematics Pusan National University) ;
  • Cho, Gyeong-Mi (Department of Multimedia Engineering Dongseo University)
  • Received : 2008.06.30
  • Accepted : 2008.11.29
  • Published : 2009.03.31

Abstract

In this paper we propose new large-update primal-dual inte-rior point algorithms for $P_*(\kappa)$ linear complementarity problems(LCPs). New search directions and proximity measures are proposed based on the kernel function$\psi(t)=\frac{t^{p+1}-1}{p+1}+\frac{e^{\frac{1}{t}}-e}{e}$,$p{\in}$[0,1]. We showed that if a strictly feasible starting point is available, then the algorithm has $O((1+2\kappa)(logn)^{2}n^{\frac{1}{p+1}}log\frac{n}{\varepsilon}$ complexity bound.

Keywords

References

  1. Y.Q. Bai, M. El Ghami, and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, Siam J. on Optimization 15 (2005), 101-128. https://doi.org/10.1137/S1052623403423114
  2. G.M. Cho, M.K. Kim, and Y.H. Lee, Complexity of large-update interior point algorithm for $P_{\ast}(\kappa)$ linear complementarity problems, Computers and Mathematics with Applications 53 (2007), 948-960. https://doi.org/10.1016/j.camwa.2006.12.004
  3. R.W. Cottle, J.S. Pang, and R.E. Stone, The linear complementarity problem, Academic Press Inc., San Diego, CA, 1992.
  4. T. Illes and M. Nagy, A Mizuno-Todd-Ye predictor-corrector algorithm for suffcient linear complementarity problems, European Journal of Operational Research 181 (2007), no. 3, 1097-1111,. https://doi.org/10.1016/j.ejor.2005.08.031
  5. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A primal-dual interior point algorithm for linear programming, in: N. Megiddo(editor) Progress in mathematical programming; Interior point related methods, Springer Verlag, New York, (1989), 29-47.
  6. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A uni ded approach to interior point algorithms for linear complementarity problems 538, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1991.
  7. M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Mathematical Programming 44 (1989), 1-26. https://doi.org/10.1007/BF01587074
  8. M. Kojima, S. Mizuno, and A. Yoshise, An O($\sqrt{n}L$ iteration potential reduction algorithm for linear complementarity problems, Mathematical Programming 50 (1991), 331-342. https://doi.org/10.1007/BF01594942
  9. N. Megiddo, Pathways to the optimal set in linear programming, in: N. Megiddo(editor), Progress in mathematical programming ; Interior point and related methods, Springer Verlag, New York, (1989), 313-358.
  10. J. Miao, A quadratically convergent O($(1+\kappa)\sqrt{n}L$)-iteration algorithm for the $P_{\ast}(\kappa)$-matrix linear complementarity problem , Mathematical Programming 69 (1995), 355-368.
  11. J. Peng, C. Roos, and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Mathematical Programming 93 (2002), 129-171. https://doi.org/10.1007/s101070200296
  12. C. Roos, T. Terlaky, and J. Ph. Vial, Theory and Algorithms for Linear Optimization, An Interior Approach, John Wiley and Sons, Chichester, UK, 1997.