COMPLEXITY ANALYSIS OF IPM FOR $P_{*}(\kappa)$ LCPS BASED ON ELIGIBLE KERNEL FUNCTIONS

Min-Kyung Kim and Gyeong-Mi Сно

Abstract

In this paper we propose new large-update primal-dual interior point algorithms for $P_{*}(\kappa)$ linear complementarity problems (LCPs). New search directions and proximity measures are proposed based on the kernel function $\psi(t)=\frac{t^{p+1}-1}{p+1}+\frac{e^{\frac{1}{t}}-e}{e}, p \in[0,1]$. We showed that if a strictly feasible starting point is available, then the algorithm has $O\left((1+2 \kappa)(\log n)^{2} n^{\frac{1}{p+1}} \log \frac{n}{\varepsilon}\right)$ complexity bound.

1. Introduction

In this paper we consider the following linear complementarity problem (LCP) :

$$
\begin{equation*}
s=M x+q, x s=0, x \geq 0, s \geq 0 \tag{1}
\end{equation*}
$$

where $M \in R^{n \times n}$ is a $P_{*}(\kappa)$ matrix and $x, s, q \in R^{n}$, and $x s$ denotes the componentwise product of vectors x and s.

LCPs have many applications in mathematical programming and equilibrium problems. The reader can refer to [3] for the basic theory, algorithms and applications.

The primal-dual IPM for linear optimization(LO) problem was first introduced in [5] and [9]. They analyzed the polynomial complexity of the algorithm. Later on, Kojima et al. generalized their algorithms to monotone LCPs([7]), i.e. $P_{*}(0) \mathrm{LCPs}$ and to $P_{*}(\kappa) \mathrm{LCPs}([6])$. Since then an interior point algorithm's quality is measured by the fact whether it can be generalized to $P_{*}(\kappa)$ LCPs or $\operatorname{not}([4])$. Most of polynomial time interior point algorithms are based on the logarithmic barrier functions, e.g. see [12] . Peng et al.([11]) introduced self-regular barrier functions and obtained the best complexity result for large-update primal-dual IPMs for LO with some specific self regular barrier function. Recently, Bai et al.([1]) proposed a new class of kernel functions

[^0]which are called eligible and they obtained polynomial complexity for LO and greatly simplified the analysis.

In this paper we propose new large-update primal-dual interior point algorithms for $P_{*}(\kappa)$ LCPs and show that the algorithm has $O\left((1+2 \kappa)(\log n)^{2} n^{\frac{1}{p+1}}\right.$ $\left.\log \frac{n}{\varepsilon}\right)$ complexity bound. Since we define a neighborhood and use a search direction based on the kernel functions which are neither self-regular nor logarithmic barrier, the analysis is different from the ones in [4], [6], [7], [8], and [10].

This paper is organized as follows. In Section 2 we recall basic concepts. In Section 3 we define the kernel function and its properties. In Section 4 we give complexity analysis of the algorithm.

We use the following notations throughout the paper : R_{+}^{n} denotes the set of n dimensional nonnegative vectors and R_{++}^{n}, the set of n dimensional positive vectors. For $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \in R^{n}, x_{\text {min }}=\min \left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, i.e. the minimal component of $x,\|x\|$ is the 2-norm of x, and X is the diagonal matrix from vector x, i.e. $X=\operatorname{diag}(x)$. $x s$ denotes the componentwise product (Hadamard product) of vectors x and $s . x^{T} s$ is the scalar product of the vectors x and $s . \quad e$ is the n-dimensional vector of ones and I is the n-dimensional identity matrix. J is the index set, i.e. $J=\{1,2, \cdots, n\}$. We write $f(x)=O(g(x))$ if $|f(x)| \leq k|g(x)|$ for some positive constant k and $f(x)=\Theta(g(x))$ if $k_{1}|g(x)| \leq|f(x)| \leq k_{2}|g(x)|$ for some positive constants k_{1} and k_{2}.

2. Preliminaries

In this section we give some basic definitions and the algorithm.
Definition $2.1([6])$. Let $\kappa \geq 0$. A matrix $M \in R^{n \times n}$ is called a $P_{*}(\kappa)$ matrix if

$$
(1+4 \kappa) \sum_{i \in J_{+}(x)} x_{i}(M x)_{i}+\sum_{i \in J_{-}(x)} x_{i}(M x)_{i} \geq 0
$$

for all $x \in R^{n}$, where $J_{+}(x)=\left\{i \in J: x_{i}(M x)_{i} \geq 0\right\}$ and $J_{-}(x)=\{i \in J:$ $\left.x_{i}(M x)_{i}<0\right\}$.

Note that $P S D$, the class of positive semidefinite matrices, is the special case of $P_{*}(\kappa)$ matrices, i.e. $P_{*}(0)$. We denote the strictly feasible set of LCP (1) by \mathcal{F}^{o}, i.e.,

$$
\mathcal{F}^{o}:=\left\{(x, s) \in R_{++}^{2 n}: s=M x+q\right\} .
$$

Definition 2.2. A $(x, s) \in \mathcal{F}^{o}$ is an ε-approximate solution if and only if $x^{T} s \leq \varepsilon$ for $\varepsilon>0$.

Definition 2.3. $\psi: R_{+} \rightarrow R_{+}$is called a kernel function if it is twice differentiable and the following conditions are satisfied :
(i) $\psi^{\prime}(1)=\psi(1)=0$,
(ii) $\psi^{\prime \prime}(t)>0$, for all $t>0$,
(iii) $\lim _{t \rightarrow 0^{+}} \psi(t)=\lim _{t \rightarrow \infty} \psi(t)=\infty$.

Definition 2.4. A function $\psi\left(\in \mathcal{C}^{3}\right):(0, \infty) \rightarrow R$ is eligible if it satisfies the following conditions:
(i) $t \psi^{\prime \prime}(t)+\psi^{\prime}(t)>0, t>0$.
(ii) $\psi^{\prime \prime \prime}(t)<0, t>0$,
(iii) $2 \psi^{\prime \prime}(t)^{2}-\psi^{\prime}(t) \psi^{\prime \prime \prime}(t)>0,0<t \leq 1$.
(iv) $\psi^{\prime \prime}(t) \psi^{\prime}(\beta t)-\beta \psi^{\prime}(t) \psi^{\prime \prime}(\beta t)>0, t>1, \beta>1$.

Definition 2.5. A function $f: D(\subset R) \rightarrow R$ is exponentially convex if and only if $f\left(\sqrt{x_{1} x_{2}}\right) \leq \frac{1}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)$ for all $x_{1}, x_{2} \in D$.
Lemma 2.6 (Lemma 4.1 in [6]). Let $M \in R^{n \times n}$ be a $P_{*}(\kappa)$ matrix and $x, s \in$ R_{++}^{n}. Then for all $a \in R^{n}$ the system

$$
\left\{\begin{array}{l}
-M \Delta x+\Delta s=0 \\
S \Delta x+X \Delta s=a
\end{array}\right.
$$

has a unique solution $(\Delta x, \Delta s)$.
To find an ε-approximate solution for (1) we perturb the complementarity condition, and we get the following parameterized system :

$$
\begin{equation*}
s=M x+q, x s=\mu e, x>0, s>0, \tag{2}
\end{equation*}
$$

where $\mu>0$. Without loss of generality, we assume that (1) is strictly feasible, i.e. there exists $\left(x^{0}, s^{0}\right)$ such that $s^{0}=M x^{0}+q, x^{0}>0, s^{0}>0$, and moreover, we have an initial strictly feasible point with $\Psi\left(x^{0}, s^{0}, \mu^{0}\right) \leq \tau$ for some $\mu^{0}>0$. For this the reader refers to [6]. Since M is a $P_{*}(\kappa)$ matrix and (1) is strictly feasible, (2) has a unique solution for any $\mu>0$. We denote the solution of (2) as $(x(\mu), s(\mu))$ for given $\mu>0$. We call the solution set $\{(x(\mu), s(\mu)) \mid \mu>0\}$ the central path for system (1). Note that the sequence $(x(\mu), s(\mu))$ approaches to the solution (x, s) of the system (1) as $\mu \rightarrow 0([6])$. IPMs follow the central path approximately. For the convenience we define the following notations:

$$
\begin{equation*}
d=\sqrt{\frac{x}{s}}, v=\sqrt{\frac{x s}{\mu}}, d_{x}=\frac{v \Delta x}{x}, d_{s}=\frac{v \Delta s}{s} . \tag{3}
\end{equation*}
$$

Using (3), we can write the Newton system as follows :

$$
\begin{equation*}
-\bar{M} d_{x}+d_{s}=0, d_{x}+d_{s}=v^{-1}-v \tag{4}
\end{equation*}
$$

where $\bar{M}=D M D$ and $D=\operatorname{diag}(d)$.
Note that $v^{-1}-v$ in (4) is the negative gradient of the logarithmic barrier function $\Psi_{l}(v)=\sum_{i=1}^{n} \psi_{l}\left(v_{i}\right), \psi_{l}(t)=\left(\left(t^{2}-1\right) / 2-\log t\right)$. In this paper we replace the centering equation by

$$
\begin{equation*}
d_{x}+d_{s}=-\nabla \Psi(v), \tag{5}
\end{equation*}
$$

where $\Psi(v)=\sum_{i=1}^{n} \psi\left(v_{i}\right)$,

$$
\begin{equation*}
\psi(t)=\frac{t^{p+1}-1}{p+1}+\frac{e^{\frac{1}{t}}-e}{e}, p \in[0,1] \tag{6}
\end{equation*}
$$

Then we have the modified Newton system as follows :

$$
\begin{equation*}
-M \Delta x+\Delta s=0, S \Delta x+X \Delta s=-\mu v \nabla \Psi(v) \tag{7}
\end{equation*}
$$

Since M is a $P_{*}(\kappa)$ matrix and (1) is strictly feasible, this system uniquely defines a search direction $(\Delta x, \Delta s)$ by Lemma 2.6. Throughout the paper, we assume that a proximity parameter τ and a barrier update parameter θ are given and $\tau=O(n)$ and $0<\theta<1$, fixed. The algorithm works as follows. We assume that a strictly feasible point (x, s) is given which is in a τ-neighborhood of the given μ-center. Then after decreasing μ to $\mu_{+}=(1-\theta) \mu$, for some fixed $\theta \in(0,1)$, we solve the modified Newton system (7) to obtain the unique search direction. The positivity condition of a new iterate is ensured with the right choice of the step size α which is defined by some line search rule. This procedure is repeated until we find a new iterate $\left(x_{+}, s_{+}\right)$which is in a τ-neighborhood of the μ_{+}-center and then we let $\mu:=\mu_{+}$and $(x, s):=$ $\left(x_{+}, s_{+}\right)$. Then μ is again reduced by the factor $1-\theta$ and we solve the modified Newton system targeting at the new μ_{+}-center, and so on. This process is repeated until μ is small enough, e.g. $n \mu \leq \varepsilon$.

Algorithm

Input:
A threshold parameter $\tau>1$;
an accuracy parameter $\varepsilon>0$;
a fixed barrier update parameter $\theta, 0<\theta<1$;
starting point $\left(x^{0}, s^{0}\right)$ and $\mu^{0}>0$ such that $\Psi\left(x^{0}, s^{0}, \mu^{0}\right) \leq \tau ;$
begin
$x:=x^{0} ; s:=s^{0} ; \mu:=\mu^{0} ;$
while $n \mu \geq \varepsilon$ do
begin
$\mu:=(1-\theta) \mu ;$
while $\Psi(v)>\tau$ do
begin
solve (7) for Δx and Δs;
determine a step size α from (17);
$x:=x+\alpha \Delta x ;$
$s:=s+\alpha \Delta s ;$

end

end
end

3. The kernel function and its properties

For $\psi(t)$ we have

$$
\begin{align*}
& \psi^{\prime}(t)=t^{p}-\frac{e^{\frac{1}{t}-1}}{t^{2}}, \quad \psi^{\prime \prime}(t)=p t^{p-1}+\frac{1+2 t}{t^{4}} e^{\frac{1}{t}-1} \tag{8}\\
& \psi^{\prime \prime \prime}(t)=p(p-1) t^{p-2}-\frac{1+6 t+6 t^{2}}{t^{6}} e^{\frac{1}{t}-1}
\end{align*}
$$

Since $\psi^{\prime \prime}(t)>0, \psi(t)$ is strictly convex. Note that for $p \in[0,1], \psi(1)=\psi^{\prime}(1)=$ 0 . Since $\psi(1)=\psi^{\prime}(1)=0, \psi(t)=\int_{1}^{t} \int_{1}^{\xi} \psi^{\prime \prime}(\varsigma) d \varsigma d \xi$. We define the norm-based proximity measure $\delta(v)$ as follows :

$$
\begin{equation*}
\delta(v)=\frac{1}{2}\|\nabla \Psi(v)\|=\frac{1}{2}\left\|d_{x}+d_{s}\right\| . \tag{9}
\end{equation*}
$$

Note that since $\Psi(v)$ is strictly convex and minimal at $v=e$, we have $\Psi(v)=$ $0 \Leftrightarrow \delta(v)=0 \Leftrightarrow v=e$. For the notational convenience we denote $\delta(v)$ by δ. In the following lemma we give properties of the kernel function $\psi(t)$.

Lemma 3.1. Kernel function $\psi(t)$ in (6) satisfies the following properties.
(i) $t \psi^{\prime \prime}(t)+\psi^{\prime}(t)>0, t>0$.
(ii) $\psi^{\prime \prime \prime}(t)<0, t>0$,
(iii) $2 \psi^{\prime \prime}(t)^{2}-\psi^{\prime}(t) \psi^{\prime \prime \prime}(t)>0,0<t \leq 1$.
(iv) $\psi^{\prime \prime}(t) \psi^{\prime}(\beta t)-\beta \psi^{\prime}(t) \psi^{\prime \prime}(\beta t)>0, t>1, \beta>1$.
(v) $\psi(t) \leq \frac{t^{p+1}}{p+1}, t \geq 1$.

Proof. (i): From (8), $t \psi^{\prime \prime}(t)+\psi^{\prime}(t)=\left(p t^{p}+\frac{(1+2 t)}{t^{3}} e^{\frac{1}{t}-1}\right)+\left(t^{p}-\frac{e^{\frac{1}{t}-1}}{t^{2}}\right)=$ $(p+1) t^{p}+\frac{(1+t)}{t^{3}} e^{\frac{1}{t}-1}>0$, for $t>0$.
(ii) By (8), obvious.
(iii): From (8), $2 \psi^{\prime \prime}(t)^{2}-\psi^{\prime}(t) \psi^{\prime \prime \prime}(t)=2\left(p t^{p-1}+\frac{1+2 t}{t^{4}} e^{\frac{1}{t}-1}\right)^{2}-\left(t^{p}-\frac{e^{\frac{1}{t}-1}}{t^{2}}\right)(p(p-$ 1) $\left.t^{p-2}-\frac{1+6 t+6 t^{2}}{t^{6}} e^{\frac{1}{t}-1}\right)=p(p+1) t^{2 p-2}+\left(\frac{p(p-1)}{t^{4-p}}+\frac{4 p(1+2 t)}{t^{5-p}}+\frac{1+6 t+6 t^{2}}{t^{6-p}}\right) e^{\frac{1}{t}-1}+$ $\frac{1+2 t+2 t^{2}}{t^{8}} e^{2\left(\frac{1}{t}-1\right)}>p(p+1) t^{2 p-2}+\left(\frac{4 p(1+2 t)}{t^{5-p}}+\frac{p^{2}+6 t+6 t^{2}}{t^{4-p}}\right) e^{\frac{1}{t}-1}+\frac{1+2 t+2 t^{2}}{t^{8}} e^{2\left(\frac{1}{t}-1\right)}>$ 0 , since $\frac{1}{t^{6-p}}>\frac{1}{t^{4-p}}$ for $0<t \leq 1$ and $p \in[0,1]$.
(iv): From (8), $\psi^{\prime \prime}(t) \psi^{\prime}(\beta t)-\beta \psi^{\prime}(t) \psi^{\prime \prime}(\beta t)=\left(\beta^{p} e^{\frac{1}{t}-1}-\frac{1}{\beta^{3}} e^{\frac{1}{\beta t}-1}\right) \frac{1}{t^{4-p}}+(2+$ p) $\left(\beta^{p} e^{\frac{1}{t}-1}-\frac{1}{\beta^{2}} e^{\frac{1}{\beta t}-1}\right) \frac{1}{t^{3-p}}+\frac{1}{\beta^{2} t^{6}} e^{\frac{1}{t}-1} e^{\frac{1}{\beta t}-1}\left(\frac{1}{\beta}-1\right)>(3+p)\left(\beta^{p}-\frac{1}{\beta^{2}}\right) \frac{e^{\frac{1}{t}-1} e^{\frac{1}{\beta t}-1}}{t^{6}}>$ 0 , since $\frac{1}{t^{4-p}}, \frac{1}{t^{3-p}}>\frac{1}{t^{6}}$ and $e^{\frac{1}{t}-1}, e^{\frac{1}{\beta t}-1}>e^{\frac{1}{t}-1} e^{\frac{1}{\beta t}-1}$ for $p \in[0,1], t>1$ and $\beta>1$.
(v) : Since $e^{\frac{1}{t}}-e \leq 0$ for $t \geq 1, \psi(t)=\frac{t^{p+1}-1}{p+1}+\frac{e^{\frac{1}{t}}-e}{e} \leq \frac{t^{p+1}}{p+1}, t \geq 1$.
By Lemma $3.1(i)$ and Lemma 1 in [11], $\psi(t)$ is exponentially convex. Let $\varrho:[0, \infty) \rightarrow[1, \infty)$ be the inverse function of $\psi(t)$ for $t \geq 1, \rho:[0, \infty) \rightarrow(0,1]$ the inverse function of $-\frac{1}{2} \psi^{\prime}(t)$ for $t \in(0,1]$. We denote the barrier term of $\psi(t)$
as $\psi_{b}(t)=\frac{e^{\frac{1}{t}}-e}{e}$. Let $\underline{\rho}:[0, \infty) \rightarrow(0,1]$ be the inverse function of the restriction of $-\psi_{b}^{\prime}(t)$ to the interval $(0,1]$. Then we obtain the following lemma.

Lemma 3.2. We have
(i) $((p+1) s+1)^{\frac{1}{p+1}} \leq \varrho(s) \leq 1+s+\sqrt{s^{2}+2 s}, s \geq 0$.
(ii) $\rho(s) \geq \rho(1+2 s), s \geq 0$.

Proof. (i): Let $\psi(t)=s$ for $t \geq 1$. Then $s=\psi(t)=\frac{t^{p+1}-1}{p+1}+\psi_{b}(t) \leq \frac{t^{p+1}-1}{p+1}$, for $t \geq 1$. Thus we have $t=\varrho(s) \geq((p+1) s+1)^{\frac{1}{p+1}}$. For the second inequality, we first want to show that $s=\psi(t) \geq \frac{(t-1)^{2}}{2 t}, t \geq 1$. It suffices to show that $2 t \psi(t) \geq(t-1)^{2}$. Let $f(t)=2 t \psi(t)-(t-1)^{2}, t \geq 1$. Then $f(1)=0$ and $f^{\prime}(t)=2 \psi(t)+2 t\left(t^{p}-1\right)+2\left(1-\frac{e^{\frac{1}{t}-1}}{t}\right) \geq 0$, for $t \geq 1$. Thus we have $f(t)=2 t \psi(t)-(t-1)^{2} \geq 0$, for $t \geq 1$. So we have $t^{2}-2(1+s) t+1 \leq 0$ and this implies that $1+s-\sqrt{s^{2}+2 s} \leq \varrho(s)=t \leq 1+s+\sqrt{s^{2}+2 s}$, for $t \geq 1$. Hence we have $((p+1) s+1)^{\frac{1}{p+1}} \leq \varrho(s)=t \leq 1+s+\sqrt{s^{2}+2 s}$, for $t \geq 1$.
(ii): Let $t=\rho(s)$. Then by the definition of $\rho, s=-\frac{1}{2} \psi^{\prime}(t)$ and $-2 s=\psi^{\prime}(t)=$ $t^{p}+\psi_{b}^{\prime}(t)$, for $t \leq 1$. Since $t \leq 1$, we have

$$
\begin{equation*}
-\psi_{b}^{\prime}(t)=t^{p}+2 s \leq 1+2 s=-\psi_{b}^{\prime}(\underline{\rho}(1+2 s)) \tag{10}
\end{equation*}
$$

Since $-\psi_{b}^{\prime \prime}(t)=-\frac{1+2 t}{t^{4}} e^{\frac{1}{t}-1}<0,-\psi_{b}^{\prime}(t)$ is monotonically decreasing in t. Hence by (10), we have $t=\rho(s) \geq \rho(1+2 s)$.

By the definition of $\underline{\rho}$, we have $\underline{\rho}(s)=t$ and $\frac{e^{\frac{1}{t}-1}}{t^{2}}=s$ for $0<t \leq 1$. It follows that $e^{\frac{1}{t}-1}=s t^{2} \leq s$. Hence $\underline{\rho}(s)=t \geq \frac{1}{1+\log s}$. Thus, by Lemma 3.2 (ii),

$$
\begin{equation*}
\rho(s) \geq \underline{\rho}(1+2 s) \geq \frac{1}{1+\log (1+2 s)} . \tag{11}
\end{equation*}
$$

4. Complexity analysis

In this section we analyze the complexity of the algorithm. Since M is a $P_{*}(\kappa)$ matrix and $M \Delta x=\Delta s$ from (7), for $\Delta x \in R^{n}$ we have

$$
(1+4 \kappa) \sum_{i \in J_{+}} \Delta x_{i} \Delta s_{i}+\sum_{i \in J_{-}} \Delta x_{i} \Delta s_{i} \geq 0
$$

where $J_{+}=\left\{i \in J: \Delta x_{i} \Delta s_{i} \geq 0\right\}, J_{-}=J-J_{+}$and $\Delta x_{i}, \Delta s_{i}$ denote the i-th components of the vectors Δx and Δs, respectively. Since $d_{x} d_{s}=$ $\frac{v^{2} \Delta x \Delta s}{x s}=\frac{\Delta x \Delta s}{\mu}$ and $\mu>0$,

$$
\begin{equation*}
(1+4 \kappa) \sum_{i \in J_{+}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i}+\sum_{i \in J_{-}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i} \geq 0 . \tag{12}
\end{equation*}
$$

For notational convenience we let $\sigma_{+}=\sum_{i \in J_{+}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i}, \sigma_{-}=-\sum_{i \in J_{-}}\left[d_{x}\right]_{i}\left[d_{s}\right]_{i}$. In the following we cite technical lemmas in [2] without proof.

Lemma 4.1 (Lemma 4.2 in $[2]) . \sum_{i=1}^{n}\left(\left[d_{x}\right]_{i}^{2}+\left[d_{s}\right]_{i}^{2}\right) \leq 4(1+2 \kappa) \delta^{2},\left\|d_{x}\right\| \leq$ $2 \sqrt{1+2 \kappa} \delta$, and $\left\|d_{s}\right\| \leq 2 \sqrt{1+2 \kappa} \delta$.

After a damped step for fixed μ we have

$$
x_{+}=x+\alpha \Delta x, s_{+}=s+\alpha \Delta s
$$

Then by (3), we have $x_{+}=x\left(e+\alpha \frac{\Delta x}{x}\right)=x\left(e+\alpha \frac{d_{x}}{v}\right)=\frac{x}{v}\left(v+\alpha d_{x}\right), s_{+}=$ $s\left(e+\alpha \frac{\Delta s}{s}\right)=s\left(e+\alpha \frac{d_{s}}{v}\right)=\frac{s}{v}\left(v+\alpha d_{s}\right)$. Then we get $v_{+}^{2}=\frac{x_{+} s_{+}}{\mu}=(v+$ $\left.\alpha d_{x}\right)\left(v+\alpha d_{s}\right)$. Throughout the paper we assume that the step size α is such that the coordinates of the vectors $v+\alpha d_{x}$ and $v+\alpha d_{s}$ are positive. Since $\psi(v)$ is exponentially convexity, we have

$$
\Psi\left(v_{+}\right)=\Psi\left(\sqrt{\left(v+\alpha d_{x}\right)\left(v+\alpha d_{s}\right)}\right) \leq \frac{1}{2}\left(\Psi\left(v+\alpha d_{x}\right)+\Psi\left(v+\alpha d_{s}\right)\right)
$$

For given $\mu>0$ by letting $f(\alpha)$ be the difference of the new and old proximity measures, i.e.

$$
f(\alpha)=\Psi\left(v_{+}\right)-\Psi(v)
$$

Then we have

$$
f(\alpha) \leq f_{1}(\alpha)
$$

where $f_{1}(\alpha):=\frac{1}{2}\left(\Psi\left(v+\alpha d_{x}\right)+\Psi\left(v+\alpha d_{s}\right)\right)-\Psi(v)$. Note that $f(0)=f_{1}(0)=$ 0 . By taking the derivative of $f_{1}(\alpha)$ with respect to α, we have $f_{1}^{\prime}(\alpha)=$ $\frac{1}{2} \sum_{i=1}^{n}\left(\psi^{\prime}\left(v_{i}+\alpha\left[d_{x}\right]_{i}\right)\left[d_{x}\right]_{i}+\psi^{\prime}\left(v_{i}+\alpha\left[d_{s}\right]_{i}\right)\left[d_{s}\right]_{i}\right)$. From (5) and the definition

$$
\begin{equation*}
f_{1}^{\prime}(0)=\frac{1}{2} \nabla \Psi(v)^{T}\left(d_{x}+d_{s}\right)=-\frac{1}{2} \nabla \Psi(v)^{T} \nabla \Psi(v)=-2 \delta^{2} . \tag{13}
\end{equation*}
$$

By taking the derivative of $f_{1}^{\prime}(\alpha)$ with respect to α, we have

$$
\begin{equation*}
f_{1}^{\prime \prime}(\alpha)=\frac{1}{2} \sum_{i=1}^{n}\left(\psi^{\prime \prime}\left(v_{i}+\alpha\left[d_{x}\right]_{i}\right)\left[d_{x}\right]_{i}^{2}+\psi^{\prime \prime}\left(v_{i}+\alpha\left[d_{s}\right]_{i}\right)\left[d_{s}\right]_{i}^{2}\right) \tag{14}
\end{equation*}
$$

To compute the upper bound for the difference of the new and old proximity measures, we need the following technical lemmas.
Lemma 4.2 (Lemma 4.3 in [2]). $f_{1}^{\prime \prime}(\alpha) \leq 2(1+2 \kappa) \delta^{2} \psi^{\prime \prime}\left(v_{\min }-2 \alpha \sqrt{1+2 \kappa} \delta\right)$.
Lemma 4.3 (Lemma 4.4 in [2]). $f_{1}^{\prime}(\alpha) \leq 0$ if α is satisfying

$$
\begin{equation*}
-\psi^{\prime}\left(v_{\min }-2 \alpha \delta \sqrt{1+2 \kappa}\right)+\psi^{\prime}\left(v_{\min }\right) \leq \frac{2 \delta}{\sqrt{1+2 \kappa}} \tag{15}
\end{equation*}
$$

In the following lemma, we compute the feasible step size α such that the proximity measure is decreasing when we take a new iterate for fixed μ.
Lemma 4.4 (Lemma 4.5 in [2]). Let $\rho:[0, \infty) \rightarrow(0,1]$ denote the inverse function of the restriction of $-\frac{1}{2} \psi^{\prime}(t)$ to the interval $(0,1]$. Then the largest step size α which satisfies (15) is given by

$$
\begin{equation*}
\bar{\alpha}:=\frac{1}{2 \delta \sqrt{1+2 \kappa}}\left(\rho(\delta)-\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right) . \tag{16}
\end{equation*}
$$

In the following lemma we compute the lower bound for $\bar{\alpha}$ in Lemma 4.4.
Lemma 4.5. Let ρ and $\bar{\alpha}$ be as defined in Lemma 4.4. Then we have

$$
\bar{\alpha} \geq \frac{1}{1+2 \kappa} \frac{1}{\psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right)}
$$

Proof. By the definition of $\rho,-\psi^{\prime}(\rho(\delta))=2 \delta$. By taking the derivative with respect to δ, we get $-\psi^{\prime \prime}(\rho(\delta)) \rho^{\prime}(\delta)=2$. So we have $\rho^{\prime}(\delta)=-\frac{2}{\psi^{\prime \prime}(\rho(\delta))}<0$ since $\psi^{\prime \prime}>0$. Hence ρ is monotonically decreasing. By (16) and the fundamental theorem of calculus, we have

$$
\begin{aligned}
\bar{\alpha} & =\frac{1}{2 \delta \sqrt{1+2 \kappa}}\left(\rho(\delta)-\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right) \\
& =\frac{1}{2 \delta \sqrt{1+2 \kappa}} \int_{\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta}^{\delta} \rho^{\prime}(\xi) d \xi \\
& =\frac{1}{\delta \sqrt{1+2 \kappa}} \int_{\delta}^{\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta} \frac{d \xi}{\psi^{\prime \prime}(\rho(\xi))}
\end{aligned}
$$

Since $\delta \leq \xi \leq\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta$ and ρ is monotonically decreasing,

$$
\rho(\xi) \geq \rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)
$$

Since $\psi^{\prime \prime}$ is monotonically decreasing, $\psi^{\prime \prime}(\rho(\xi)) \leq \psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right)$. Hence $\frac{1}{\psi^{\prime \prime}(\rho(\xi))} \geq \frac{1}{\psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \hbar}}\right) \delta\right)\right)}$. Therefore we have

$$
\bar{\alpha}=\frac{1}{1+2 \kappa} \frac{1}{\psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right)}
$$

Define

$$
\begin{equation*}
\tilde{\alpha}=\frac{1}{1+2 \kappa} \frac{1}{\psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right)} \tag{17}
\end{equation*}
$$

Then we will use $\tilde{\alpha}$ as the default step size in our Algorithm. Also by Lemma $4.5, \bar{\alpha} \geq \tilde{\alpha}$. In the following, we want to evaluate the decrease of the proximity function value. We cite the following result in [11] without proof.

Lemma 4.6 (Lemma 3.12 in [11]). Let $h(t)$ be a twice differentiable convex function with $h(0)=0, h^{\prime}(0)<0$ and let $h(t)$ attains its (global) minimum at $t^{*}>0$. If $h^{\prime \prime}(t)$ is increasing for $t \in\left[0, t^{*}\right]$, then $h(t) \leq \frac{t h^{\prime}(0)}{2}, 0 \leq t \leq t^{*}$.
Lemma 4.7 (Lemma 4.8 in [2]). If the step size α is such that $\alpha \leq \bar{\alpha}$, then $f(\alpha) \leq-\alpha \delta^{2}$.

In the following theorem we have the upper bound for the difference $f(\alpha)$ between new and old proximity measures.

Theorem 4.8. Let $\tilde{\alpha}$ be a step size as defined in (17). Then we have

$$
\begin{equation*}
f(\tilde{\alpha}) \leq-\frac{1}{1+2 \kappa} \frac{\delta^{2}}{\psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right)} \tag{18}
\end{equation*}
$$

Proof. By Lemma 4.5, $\tilde{\alpha} \leq \bar{\alpha}$. By Lemma 4.7, we get the result.
Lemma 4.9. The right hand side in (18) is monotonically decreasing in δ.
Proof. Let $t=\rho(a \delta)$ where $a=1+\frac{1}{\sqrt{1+2 \kappa}}$. Then $0<t \leq 1$ and $-\psi^{\prime}(\rho(a \delta))=$ $2 a \delta$, i.e. $\frac{1}{2} \psi^{\prime}(t)=-\frac{1}{2} \psi^{\prime}(\rho(a \delta))=a \delta$. Then

$$
\frac{1}{1+2 \kappa} \frac{\delta^{2}}{\psi^{\prime \prime}\left(\rho\left(\left(1+\frac{1}{\sqrt{1+2 \kappa}}\right) \delta\right)\right)}=\frac{1}{4 a^{2}(1+2 \kappa)} \frac{\psi^{\prime}(t)^{2}}{\psi^{\prime \prime}(t)} .
$$

Define

$$
g(t)=\frac{1}{4 a^{2}(1+2 \kappa)} \frac{\psi^{\prime}(t)^{2}}{\psi^{\prime \prime}(t)}
$$

Since ρ is monotonically decreasing, t is monotonically decreasing if δ increases. Hence the right hand in (18) is monotonically decreasing in δ if and only if the function $g(t)$ is monotonically decreasing for $0<t \leq 1$. Note that $g(1)=0$ and $g^{\prime}(t)=\frac{1}{4 a^{2}(1+2 \kappa)} \frac{\psi^{\prime}(t)\left\{2 \psi^{\prime \prime}(t)^{2}-\psi^{\prime}(t) \psi^{\prime \prime \prime}(t)\right\}}{\psi^{\prime \prime}(t)^{2}}$. Since $\psi^{\prime}(1)=0$ and $\psi^{\prime \prime}>0$, $\psi^{\prime}(t) \leq 0$ for $0<t \leq 1$. By Lemma $3.1(i i i), g(t)$ is monotonically decreasing for $0<t \leq 1$. Hence the lemma is proved.

Note that at the start of outer iteration of the algorithm, just before the update of μ with the factor $1-\theta$, we have $\Psi(v) \leq \tau$. Due to the update of μ the vector v is divided by the factor $\sqrt{1-\theta}$, with $0<\theta<1$, which in general leads to an increase in the value of $\Psi(v)$. Then, during the subsequent inner iterations, $\Psi(v)$ decreases until it passes the threshold τ again. Hence, during the process of the algorithm the largest values of $\Psi(v)$ occur just after the updates of μ.

In the following lemma we obtain an upper bound for $\Psi(v)$.
Lemma 4.10. If $\Psi(v) \leq \tau$ for $0<\theta<1$, then we have

$$
\psi\left(\frac{v}{\sqrt{1-\theta}}\right) \leq \frac{n}{(p+1)(1-\theta)^{\frac{p+1}{2}}}\left(1+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{p+1}
$$

Proof. By the definition of ϱ and $\frac{1}{\sqrt{1-\theta}} \geq 1, \frac{1}{\sqrt{1-\theta}} \varrho\left(\frac{\Psi(v)}{n}\right) \geq 1$. By Theorem 3.2 in [1], Lemma $3.1(v)$, and Lemma $3.2(i)$, we have

$$
\begin{aligned}
\psi\left(\frac{v}{\sqrt{1-\theta}}\right) & \leq n \psi\left(\frac{\varrho\left(\frac{\Psi(v)}{n}\right)}{\sqrt{1-\theta}}\right) \\
& \leq n \frac{\left(\varrho\left(\frac{\Psi(v)}{n}\right)\right)^{p+1}}{(p+1)(1-\theta)^{\frac{p+1}{2}}} \\
& \leq \frac{n}{(p+1)(1-\theta)^{\frac{p+1}{2}}}\left(1+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{p+1}
\end{aligned}
$$

For notational convenience we denote the value of $\Psi(v)$ after the μ-update as Ψ_{0}, then

$$
\begin{equation*}
\Psi_{0} \leq \frac{n}{(p+1)(1-\theta)^{\frac{p+1}{2}}}\left(1+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{p+1} \tag{19}
\end{equation*}
$$

Since $\tau=O(n)$ and $\theta=\Theta(1), \Psi_{0}=O(n)$.
In the following theorem we provide a lower bound for δ in terms of the proximity function $\Psi(v)$.

Theorem 4.11. Let δ be the norm-based proximity measure as defined in (9). If $\Psi:=\Psi(v) \geq \tau$ for $\tau \geq 1$, then we have

$$
\delta \geq \frac{1}{6} \Psi^{\frac{p}{p+1}}
$$

Proof. By Theorem 4.9 in [1] and $e^{\frac{1}{e(\Psi)}-1} \leq 1$ for $\varrho(\Psi) \geq 1$, we have

$$
\begin{aligned}
\delta \geq \frac{1}{2} \psi^{\prime}(\varrho(\Psi)) & =\frac{1}{2}\left(\varrho(\Psi)^{p}-\frac{e^{\frac{1}{\varrho(\Psi)}-1}}{\varrho(\Psi)^{2}}\right) \\
& \geq \frac{1}{2}\left(\varrho(\Psi)^{p}-\frac{1}{\varrho(\Psi)^{2}}\right) \\
& \geq \frac{1}{2}\left(\varrho(\Psi)^{p}-\frac{1}{\varrho(\Psi)}\right)
\end{aligned}
$$

Then by Lemma 3.2 (i), $\Psi \geq 1$ and $p \in[0,1]$, we have

$$
\begin{aligned}
\delta & \geq \frac{1}{2}\left(((p+1) \Psi+1)^{\frac{p}{p+1}}-\frac{1}{((p+1) \Psi+1)^{\frac{1}{p+1}}}\right)=\frac{1}{2}\left(\frac{((p+1) \Psi+1)^{\frac{p+1}{p+1}}-1}{((p+1) \Psi+1)^{\frac{1}{p+1}}}\right) \\
& =\frac{1}{2} \frac{(p+1) \Psi}{((p+1) \Psi+1)^{\frac{1}{p+1}}} \geq \frac{(p+1) \Psi}{2(2 \Psi+1)^{\frac{1}{p+1}}} \geq \frac{(p+1) \Psi}{6 \Psi^{\frac{1}{p+1}}} \geq \frac{1}{6} \Psi^{\frac{p}{p+1}} .
\end{aligned}
$$

In the following we compute the total number of iterations of the algorithm to get an ε-approximate solution. We need the following technical lemma to obtain iteration bounds. For the proof the reader can refer [11].
Lemma 4.12 (Lemma A. 2 in [1]). Let $t_{0}, t_{1}, \cdots, t_{K}$ be a sequence of positive numbers such that $t_{k+1} \leq t_{k}-\beta t_{k}^{1-\gamma}, k=0,1, \cdots, K-1$, where $\beta>0$ and $0<\gamma \leq 1$. Then $K \leq\left\lfloor\frac{t_{0}^{\gamma}}{\beta \gamma}\right\rfloor$.

We define the value of $\Psi(v)$ after the μ-update as Ψ_{0} and the subsequent values in the same outer iteration are denoted as $\Psi_{k}, k=1,2, \cdots$. Let K denote the total number of inner iterations in the outer iteration. Then by the definition of K, we have $\Psi_{K-1}>\tau, 0 \leq \Psi_{K} \leq \tau$.

In the following lemma, we compute the upper bound for the total number of inner iterations which we needed to return to the τ-neighborhood again. For notational convenience we denote $\Psi(v)$ by Ψ and $a=1+\frac{1}{\sqrt{1+2 \kappa}}$.
Lemma 4.13. Let K be the total number of inner iterations in an outer iteration. Then we have

$$
K \leq 216(1+2 \kappa)(p+1)\left(1+\log \left(\frac{5}{3} \Psi_{0}^{\frac{p}{p+1}}\right)\right) \Psi_{0}^{\frac{1}{p+1}}
$$

where Ψ_{0} denotes the value of $\Psi(v)$ after the μ-update.
Proof. From Theorem 4.8, Theorem 4.11 and Lemma 4.9, we have

$$
f(\tilde{\alpha}) \leq-\frac{1}{1+2 \kappa} \frac{\delta^{2}}{\psi^{\prime \prime}(\rho(a \delta))} \leq-\frac{1}{36(1+2 \kappa)} \frac{\Psi^{\frac{2 p}{p+1}}}{\psi^{\prime \prime}\left(\rho\left(\frac{a}{6} \Psi^{\frac{p}{p+1}}\right)\right)}
$$

Let $\underline{\rho}\left(1+\frac{a}{3} \Psi^{\frac{p}{p+1}}\right)=t$. Then by definition of $\underline{\rho}$,

$$
\begin{equation*}
1+\frac{a}{3} \Psi^{\frac{p}{p+1}}=\frac{e^{\frac{1}{t}-1}}{t^{2}} \tag{20}
\end{equation*}
$$

By Lemma 3.2 (ii) and (11), we have

$$
\begin{equation*}
1 \geq \rho\left(\frac{a}{6} \Psi^{\frac{p}{p+1}}\right) \geq \underline{\rho}\left(1+\frac{a}{3} \Psi^{\frac{p}{p+1}}\right)=t \geq \frac{1}{1+\log \left(1+\frac{a}{3} \Psi^{\frac{p}{p+1}}\right)} \tag{21}
\end{equation*}
$$

Then by $\psi^{\prime \prime \prime}<0$ and (21), we get

$$
f(\tilde{\alpha}) \leq-\frac{1}{36(1+2 \kappa)} \frac{\Psi^{\frac{2 p}{p+1}}}{\psi^{\prime \prime}\left(\underline{\rho}\left(1+\frac{a}{3} \Psi^{\frac{p}{p+1}}\right)\right)}=-\frac{1}{36(1+2 \kappa)} \frac{\Psi^{\frac{2 p}{p+1}}}{p t^{p-1}+\frac{1+2 t}{t^{4}} e^{\frac{1}{t}-1}}
$$

Using the fact $0<t \leq 1,(20)$ and (21), we have

$$
p t^{p-1}+\frac{1+2 t}{t^{4}} e^{\frac{1}{t}-1} \leq p t^{p-1}+\frac{3}{t^{4}} e^{\frac{1}{t}-1} \leq p t^{p-1}+\frac{3\left(1+\frac{a}{3} \Psi^{\frac{p}{p+1}}\right)}{t^{2}}
$$

$$
\leq p\left(1+\log \left(1+\frac{a}{3} \Psi^{\frac{p}{p+1}}\right)\right)^{1-p}+3\left(1+\frac{a}{3} \Psi^{\frac{p}{p+1}}\right)\left(1+\log \left(1+\frac{a}{3} \Psi^{\frac{p}{p+1}}\right)\right)^{2}
$$

Without loss of generality we may assume that $\Psi_{0} \geq \Psi \geq \tau \geq 1$. Since $a=$ $1+\frac{1}{\sqrt{1+2 \kappa}} \leq 2$, we have $1+\frac{a}{3} \Psi^{\frac{p}{p+1}} \leq\left(1+\frac{2}{3}\right) \Psi^{\frac{p}{p+1}}=\frac{5}{3} \Psi^{\frac{p}{p+1}}$. Then we have

$$
\begin{aligned}
p t^{p-1}+\frac{1+2 t}{t^{4}} e^{\frac{1}{t}-1} & \leq p\left(1+\log \left(\frac{5}{3} \Psi^{\frac{p}{p+1}}\right)\right)^{1-p}+5 \Psi^{\frac{p}{p+1}}\left(1+\log \left(\frac{5}{3} \Psi^{\frac{p}{p+1}}\right)\right)^{2} \\
& \leq 6 \Psi^{\frac{p}{p+1}}\left(1+\log \left(\frac{5}{3} \Psi_{0}^{\frac{p}{p+1}}\right)\right)^{2}
\end{aligned}
$$

Thus

$$
f(\tilde{\alpha}) \leq-\frac{1}{216(1+2 \kappa)} \frac{\Psi^{\frac{p}{p+1}}}{\left(1+\log \left(\frac{5}{3} \Psi_{0}^{\frac{p}{p+1}}\right)\right)^{2}}
$$

This implies that $\Psi_{k+1} \leq \Psi_{k}-\beta \Psi_{k}{ }^{1-\gamma}, k=0,1,2, \cdots, K-1$, where

$$
\beta=\frac{1}{216(1+2 \kappa)\left(1+\log \left(\frac{5}{3} \Psi_{0}^{\frac{p}{p+1}}\right)\right)^{2}}, \gamma=\frac{1}{p+1}
$$

Hence by Lemma 4.12, K is bounded above by

$$
\begin{equation*}
K \leq \frac{\Psi_{0}^{\gamma}}{\beta \gamma}=216(1+2 \kappa)(p+1)\left(1+\log \left(\frac{5}{3} \Psi_{0}^{\frac{p}{p+1}}\right)\right)^{2} \Psi_{0}^{\frac{1}{p+1}} \tag{22}
\end{equation*}
$$

This completes the proof.
From (19), we have

$$
\Psi_{0} \leq \frac{n}{(p+1)(1-\theta)^{\frac{p+1}{2}}}\left(1+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{p+1}
$$

From (22), we have

$$
K \leq 216(1+2 \kappa)(p+1)^{\frac{p}{p+1}} \frac{n^{\frac{1}{p+1}}}{\sqrt{1-\theta}}\left(1+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)
$$

The upper bound for the total number of iterations is obtained by multiplying the number K by the number of central path parameter updates. If the central path parameter μ has the initial value μ^{0} and is updated by multiplying $1-\theta$, with $0<\theta<1$, then after at most

$$
\left\lceil\frac{1}{\theta} \log \frac{n \mu^{0}}{\epsilon}\right\rceil
$$

iterations we have $n \mu \leq \epsilon$. So we obtain the main result.

Theorem 4.14. Let a $P_{*}(\kappa)$ linear complementarity problem be given, where $\kappa \geq 0$. Assume that a strictly feasible starting point $\left(x^{0}, s^{0}\right)$ is given with $\Psi\left(x^{0}, s^{0}, \mu^{0}\right) \leq \tau$ for some $\mu^{0}>0$. Then the total number of iterations to get an ε-approximate solution for the algorithm is bounded above by

$$
\left\lceil 216(1+2 \kappa)(p+1)^{\frac{p}{p+1}} \frac{n^{\frac{1}{p+1}}}{\sqrt{1-\theta}}\left(1+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)\right\rceil\left\lceil\frac{1}{\theta} \log \frac{n \mu^{0}}{\epsilon}\right\rceil
$$

Remark 4.15. Since $\tau=O(n)$ and $\theta=\Theta(1)$, the algorithm has $O((1+$ $\left.2 \kappa)(\log n)^{2} n^{\frac{1}{p+1}} \log \frac{n}{\varepsilon}\right)$ complexity.

References

[1] Y.Q. Bai, M. El Ghami, and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, Siam J. on Optimization 15 (2005), 101-128.
[2] G.M. Cho, M.K. Kim, and Y.H. Lee, Complexity of large-update interior point algorithm for $P_{*}(\kappa)$ linear complementarity problems, Computers and Mathematics with Applications 53 (2007), 948-960.
[3] R.W. Cottle, J.S. Pang, and R.E. Stone, The linear complementarity problem, Academic Press Inc., San Diego, CA, 1992.
[4] T. Illes and M. Nagy, A Mizuno-Todd-Ye predictor-corrector algorithm for sufficient linear complementarity problems, European Journal of Operational Research 181 (2007), no. 3, 1097-1111,.
[5] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A primal-dual interior point algorithm for linear programming, in: N. Megiddo(editor) Progress in mathematical programming; Interior point related methods, Springer Verlag, New York, (1989), 29-47.
[6] _ A unifided approach to interior point algorithms for linear complementarity problems 538, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1991.
[7] M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Mathematical Programming 44 (1989), 1-26.
[8] M. Kojima, S. Mizuno, and A. Yoshise, An $O(\sqrt{n} L)$ iteration potential reduction algorithm for linear complementarity problems, Mathematical Programming 50 (1991), 331-342.
[9] N. Megiddo, Pathways to the optimal set in linear programming, in: N. Megiddo(editor), Progress in mathematical programming ; Interior point and related methods, Springer Verlag, New York, (1989), 313-358.
[10] J. Miao, A quadratically convergent $O((1+\kappa) \sqrt{n} L)$-iteration algorithm for the $P_{*}(\kappa)$ matrix linear complementarity problem, Mathematical Programming 69 (1995), 355368.
[11] J. Peng, C. Roos, and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Mathematical Programming 93 (2002), 129-171.
[12] C. Roos, T. Terlaky, and J. Ph. Vial, Theory and Algorithms for Linear Optimization, An Interior Approach, John Wiley and Sons, Chichester, UK, 1997.

Min-Kyung Kim
Department of Mathematics
Pusan National University
Busan 609-735, Korea
E-mail address: mk-kim@pusan.ac.kr
Gyeong-Mi Cho (Corresponding author)
Department of Multimedia Engineering
Dongseo University
Busan 617-716, Korea
E-mail address: gcho@dongseo.ac.kr

[^0]: Received June 30, 2008; Accepted November 29, 2008.
 2000 Mathematics Subject Classification. 90C33, 90C51.
 Key words and phrases. Primal-dual interior point method, kernel function, complexity, polynomial algorithm, large-update, linear complementarity problem.

 This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)(KRF-2007-531-C00012).

