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COMPLEXITY ANALYSIS OF IPM FOR P∗(κ) LCPS BASED
ON ELIGIBLE KERNEL FUNCTIONS

Min-Kyung Kim and Gyeong-Mi Cho

Abstract. In this paper we propose new large-update primal-dual inte-
rior point algorithms for P∗(κ) linear complementarity problems(LCPs).

New search directions and proximity measures are proposed based on

the kernel function ψ(t) = tp+1−1
p+1

+ e
1
t −e
e

, p ∈ [0, 1]. We showed that

if a strictly feasible starting point is available, then the algorithm has

O((1 + 2κ)(logn)2n
1
p+1 log n

ε
) complexity bound.

1. Introduction

In this paper we consider the following linear complementarity problem
(LCP) :

(1) s = Mx+ q, xs = 0, x ≥ 0, s ≥ 0,

where M ∈ Rn×n is a P∗(κ) matrix and x, s, q ∈ Rn, and xs denotes the
componentwise product of vectors x and s.

LCPs have many applications in mathematical programming and equilib-
rium problems. The reader can refer to [3] for the basic theory, algorithms and
applications.

The primal-dual IPM for linear optimization(LO) problem was first intro-
duced in [5] and [9]. They analyzed the polynomial complexity of the algorithm.
Later on, Kojima et al. generalized their algorithms to monotone LCPs([7]),
i.e. P∗(0) LCPs and to P∗(κ) LCPs([6]). Since then an interior point algo-
rithm’s quality is measured by the fact whether it can be generalized to P∗(κ)
LCPs or not([4]). Most of polynomial time interior point algorithms are based
on the logarithmic barrier functions, e.g. see [12] . Peng et al.([11]) intro-
duced self-regular barrier functions and obtained the best complexity result for
large-update primal-dual IPMs for LO with some specific self regular barrier
function. Recently, Bai et al.([1]) proposed a new class of kernel functions
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which are called eligible and they obtained polynomial complexity for LO and
greatly simplified the analysis.

In this paper we propose new large-update primal-dual interior point algo-
rithms for P∗(κ) LCPs and show that the algorithm has O((1+2κ)(log n)2n

1
p+1

log n
ε ) complexity bound. Since we define a neighborhood and use a search

direction based on the kernel functions which are neither self-regular nor log-
arithmic barrier, the analysis is different from the ones in [4], [6], [7], [8], and
[10].

This paper is organized as follows. In Section 2 we recall basic concepts. In
Section 3 we define the kernel function and its properties. In Section 4 we give
complexity analysis of the algorithm.

We use the following notations throughout the paper : Rn+ denotes the set of
n dimensional nonnegative vectors and Rn++, the set of n dimensional positive
vectors. For x = (x1, x2, · · · , xn)T ∈ Rn, xmin = min{x1, x2, · · · , xn}, i.e.
the minimal component of x, ‖x‖ is the 2-norm of x, and X is the diagonal
matrix from vector x , i.e. X = diag(x). xs denotes the componentwise
product (Hadamard product) of vectors x and s. xT s is the scalar product
of the vectors x and s. e is the n-dimensional vector of ones and I is the
n-dimensional identity matrix. J is the index set, i.e. J = {1, 2, · · · , n}. We
write f(x) = O(g(x)) if | f(x) | ≤ k | g(x) | for some positive constant k and
f(x) = Θ(g(x)) if k1 | g(x) | ≤ | f(x) | ≤ k2 | g(x) | for some positive constants
k1 and k2.

2. Preliminaries

In this section we give some basic definitions and the algorithm.

Definition 2.1 ([6]). Let κ ≥ 0. A matrix M ∈ Rn×n is called a P∗(κ) matrix
if

(1 + 4κ)
∑

i∈J+(x)

xi(Mx)i +
∑

i∈J−(x)

xi(Mx)i ≥ 0 ,

for all x ∈ Rn, where J+(x) = {i ∈ J : xi(Mx)i ≥ 0} and J−(x) = {i ∈ J :
xi(Mx)i < 0}.

Note that PSD, the class of positive semidefinite matrices, is the special
case of P∗(κ) matrices, i.e. P∗(0). We denote the strictly feasible set of LCP
(1) by Fo, i.e.,

Fo := {(x, s) ∈ R2n
++ : s = Mx+ q}.

Definition 2.2. A (x, s) ∈ Fo is an ε-approximate solution if and only if
xT s ≤ ε for ε > 0.

Definition 2.3. ψ : R+ → R+ is called a kernel function if it is twice differ-
entiable and the following conditions are satisfied :

(i) ψ
′
(1) = ψ(1) = 0,
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(ii) ψ
′′
(t) > 0, for all t > 0,

(iii) limt→0+ ψ(t) = limt→∞ ψ(t) =∞.

Definition 2.4. A function ψ(∈ C3) : (0,∞) → R is eligible if it satisfies the
following conditions:

(i) tψ
′′
(t) + ψ

′
(t) > 0, t > 0.

(ii) ψ
′′′

(t) < 0, t > 0,
(iii) 2ψ

′′
(t)2 − ψ′(t)ψ′′′(t) > 0, 0 < t ≤ 1.

(iv) ψ
′′
(t)ψ

′
(βt)− βψ′(t)ψ′′(βt) > 0, t > 1, β > 1.

Definition 2.5. A function f : D(⊂ R) → R is exponentially convex if and
only if f(

√
x1x2) ≤ 1

2 (f(x1) + f(x2)) for all x1, x2 ∈ D.

Lemma 2.6 (Lemma 4.1 in [6]). Let M ∈ Rn×n be a P∗(κ) matrix and x, s ∈
Rn++. Then for all a ∈ Rn the system{

−M∆x+ ∆s = 0,
S∆x+X∆s = a

has a unique solution (∆x,∆s).

To find an ε-approximate solution for (1) we perturb the complementarity
condition, and we get the following parameterized system :

(2) s = Mx+ q, xs = µe, x > 0, s > 0,

where µ > 0. Without loss of generality, we assume that (1) is strictly feasible,
i.e. there exists (x0, s0) such that s0 = Mx0 + q, x0 > 0, s0 > 0, and moreover,
we have an initial strictly feasible point with Ψ(x0, s0, µ0) ≤ τ for some µ0 > 0.
For this the reader refers to [6]. Since M is a P∗(κ) matrix and (1) is strictly
feasible, (2) has a unique solution for any µ > 0. We denote the solution of (2)
as (x(µ), s(µ)) for given µ > 0. We call the solution set {(x(µ), s(µ)) | µ > 0}
the central path for system (1). Note that the sequence (x(µ), s(µ)) approaches
to the solution (x, s) of the system (1) as µ→ 0 ([6]). IPMs follow the central
path approximately. For the convenience we define the following notations:

d =
√
x

s
, v =

√
xs

µ
, dx =

v∆x
x

, ds =
v∆s
s
.(3)

Using (3), we can write the Newton system as follows :

(4) −M̄dx + ds = 0, dx + ds = v−1 − v,

where M̄ = DMD and D = diag(d).
Note that v−1 − v in (4) is the negative gradient of the logarithmic barrier

function Ψl(v) =
∑n
i=1 ψl(vi), ψl(t) = ((t2 − 1)/2 − log t). In this paper we

replace the centering equation by

(5) dx + ds = −∇Ψ(v),
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where Ψ(v) =
∑n
i=1 ψ(vi),

ψ(t) =
tp+1 − 1
p+ 1

+
e

1
t − e
e

, p ∈ [0, 1].(6)

Then we have the modified Newton system as follows :

(7) −M∆x+ ∆s = 0, S∆x+X∆s = −µv∇Ψ(v).

Since M is a P∗(κ) matrix and (1) is strictly feasible, this system uniquely
defines a search direction (∆x,∆s) by Lemma 2.6. Throughout the paper, we
assume that a proximity parameter τ and a barrier update parameter θ are
given and τ = O(n) and 0 < θ < 1, fixed. The algorithm works as follows. We
assume that a strictly feasible point (x, s) is given which is in a τ−neighborhood
of the given µ−center. Then after decreasing µ to µ+ = (1 − θ)µ, for some
fixed θ ∈ (0, 1), we solve the modified Newton system (7) to obtain the unique
search direction. The positivity condition of a new iterate is ensured with
the right choice of the step size α which is defined by some line search rule.
This procedure is repeated until we find a new iterate (x+, s+) which is in
a τ−neighborhood of the µ+−center and then we let µ := µ+ and (x, s) :=
(x+, s+). Then µ is again reduced by the factor 1−θ and we solve the modified
Newton system targeting at the new µ+-center, and so on. This process is
repeated until µ is small enough, e.g. nµ ≤ ε.

Algorithm

Input:
A threshold parameter τ > 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
starting point (x0, s0) and µ0 > 0 such that Ψ(x0, s0, µ0) ≤ τ ;

begin
x := x0; s := s0; µ := µ0;
while nµ ≥ ε do
begin
µ := (1− θ)µ;
while Ψ(v) > τ do
begin

solve (7) for ∆x and ∆s;
determine a step size α from (17);
x := x+ α∆x;
s := s+ α∆s;

end
end

end
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3. The kernel function and its properties

For ψ(t) we have

ψ
′
(t) = tp − e

1
t−1

t2
, ψ

′′
(t) = ptp−1 +

1 + 2t
t4

e
1
t−1,(8)

ψ
′′′

(t) = p(p− 1)tp−2 − 1 + 6t+ 6t2

t6
e

1
t−1.

Since ψ
′′
(t) > 0, ψ(t) is strictly convex. Note that for p ∈ [0, 1], ψ(1) = ψ

′
(1) =

0. Since ψ(1) = ψ
′
(1) = 0, ψ(t) =

∫ t
1

∫ ξ
1
ψ
′′
(ς)dςdξ. We define the norm-based

proximity measure δ(v) as follows :

δ(v) =
1
2
‖ ∇Ψ(v) ‖= 1

2
‖ dx + ds ‖ .(9)

Note that since Ψ(v) is strictly convex and minimal at v = e, we have Ψ(v) =
0 ⇔ δ(v) = 0 ⇔ v = e. For the notational convenience we denote δ(v) by δ.
In the following lemma we give properties of the kernel function ψ(t).

Lemma 3.1. Kernel function ψ(t) in (6) satisfies the following properties.

(i) tψ
′′
(t) + ψ

′
(t) > 0, t > 0.

(ii) ψ
′′′

(t) < 0, t > 0,
(iii) 2ψ

′′
(t)2 − ψ′(t)ψ′′′(t) > 0, 0 < t ≤ 1.

(iv) ψ
′′
(t)ψ

′
(βt)− βψ′(t)ψ′′(βt) > 0, t > 1, β > 1.

(v) ψ(t) ≤ tp+1

p+1 , t ≥ 1.

Proof. (i): From (8), tψ
′′
(t) + ψ

′
(t) = (ptp + (1+2t)

t3 e
1
t−1) + (tp − e

1
t
−1

t2 ) =
(p+ 1)tp + (1+t)

t3 e
1
t−1 > 0, for t > 0.

(ii) By (8), obvious.

(iii): From (8), 2ψ
′′
(t)2−ψ′(t)ψ′′′(t) = 2(ptp−1+ 1+2t

t4 e
1
t−1)2−(tp− e

1
t
−1

t2 )(p(p−
1)tp−2 − 1+6t+6t2

t6 e
1
t−1) = p(p+ 1)t2p−2 + (p(p−1)

t4−p + 4p(1+2t)
t5−p + 1+6t+6t2

t6−p )e
1
t−1 +

1+2t+2t2

t8 e2( 1
t−1) > p(p+1)t2p−2+( 4p(1+2t)

t5−p + p2+6t+6t2

t4−p )e
1
t−1+ 1+2t+2t2

t8 e2( 1
t−1) >

0, since 1
t6−p >

1
t4−p for 0 < t ≤ 1 and p ∈ [0, 1].

(iv): From (8), ψ
′′
(t)ψ

′
(βt)− βψ′(t)ψ′′(βt) = (βpe

1
t−1 − 1

β3 e
1
βt−1) 1

t4−p + (2 +

p)(βpe
1
t−1− 1

β2 e
1
βt−1) 1

t3−p+ 1
β2t6 e

1
t−1e

1
βt−1( 1

β−1) > (3+p)(βp− 1
β2 ) e

1
t
−1e

1
βt
−1

t6 >

0, since 1
t4−p ,

1
t3−p >

1
t6 and e

1
t−1, e

1
βt−1 > e

1
t−1e

1
βt−1 for p ∈ [0, 1], t > 1 and

β > 1.

(v): Since e
1
t − e ≤ 0 for t ≥ 1, ψ(t) = tp+1−1

p+1 + e
1
t −e
e ≤ tp+1

p+1 , t ≥ 1. �

By Lemma 3.1 (i) and Lemma 1 in [11], ψ(t) is exponentially convex. Let
% : [0,∞)→ [1,∞) be the inverse function of ψ(t) for t ≥ 1, ρ : [0,∞)→ (0, 1]
the inverse function of − 1

2ψ
′
(t) for t ∈ (0, 1]. We denote the barrier term of ψ(t)
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as ψb(t) = e
1
t −e
e . Let ρ : [0,∞)→ (0, 1] be the inverse function of the restriction

of −ψ′b(t) to the interval (0, 1]. Then we obtain the following lemma.

Lemma 3.2. We have
(i) ((p+ 1)s+ 1)

1
p+1 ≤ %(s) ≤ 1 + s+

√
s2 + 2s, s ≥ 0.

(ii) ρ(s) ≥ ρ(1 + 2s), s ≥ 0.

Proof. (i): Let ψ(t) = s for t ≥ 1. Then s = ψ(t) = tp+1−1
p+1 + ψb(t) ≤ tp+1−1

p+1 ,

for t ≥ 1. Thus we have t = %(s) ≥ ((p+1)s+1)
1
p+1 . For the second inequality,

we first want to show that s = ψ(t) ≥ (t−1)2

2t , t ≥ 1. It suffices to show
that 2tψ(t) ≥ (t − 1)2. Let f(t) = 2tψ(t) − (t − 1)2, t ≥ 1. Then f(1) = 0

and f
′
(t) = 2ψ(t) + 2t(tp − 1) + 2(1 − e

1
t
−1

t ) ≥ 0, for t ≥ 1. Thus we have
f(t) = 2tψ(t)− (t− 1)2 ≥ 0, for t ≥ 1. So we have t2 − 2(1 + s)t+ 1 ≤ 0 and
this implies that 1 + s −

√
s2 + 2s ≤ %(s) = t ≤ 1 + s +

√
s2 + 2s, for t ≥ 1.

Hence we have ((p+ 1)s+ 1)
1
p+1 ≤ %(s) = t ≤ 1 + s+

√
s2 + 2s, for t ≥ 1.

(ii): Let t = ρ(s). Then by the definition of ρ, s = − 1
2ψ
′
(t) and −2s = ψ

′
(t) =

tp + ψ
′

b(t), for t ≤ 1. Since t ≤ 1, we have

−ψ
′

b(t) = tp + 2s ≤ 1 + 2s = −ψ
′

b(ρ(1 + 2s)).(10)

Since −ψ′′b (t) = − 1+2t
t4 e

1
t−1 < 0, −ψ′b(t) is monotonically decreasing in t.

Hence by (10), we have t = ρ(s) ≥ ρ(1 + 2s). �

By the definition of ρ, we have ρ(s) = t and e
1
t
−1

t2 = s for 0 < t ≤ 1. It follows
that e

1
t−1 = st2 ≤ s. Hence ρ(s) = t ≥ 1

1+log s . Thus, by Lemma 3.2 (ii),

ρ(s) ≥ ρ(1 + 2s) ≥ 1
1 + log(1 + 2s)

.(11)

4. Complexity analysis

In this section we analyze the complexity of the algorithm. Since M is a
P∗(κ) matrix and M∆x = ∆s from (7), for ∆x ∈ Rn we have

(1 + 4κ)
∑
i∈J+

∆xi∆si +
∑
i∈J−

∆xi∆si ≥ 0,

where J+ = { i ∈ J : ∆xi∆si ≥ 0 }, J− = J − J+ and ∆xi, ∆si denote
the i-th components of the vectors ∆x and ∆s, respectively. Since dxds =
v2∆x∆s

xs = ∆x∆s
µ and µ > 0,

(1 + 4κ)
∑
i∈J+

[dx]i[ds]i +
∑
i∈J−

[dx]i[ds]i ≥ 0.(12)

For notational convenience we let σ+ =
∑
i∈J+

[dx]i[ds]i , σ− = −
∑
i∈J− [dx]i[ds]i.

In the following we cite technical lemmas in [2] without proof.
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Lemma 4.1 (Lemma 4.2 in [2]).
∑n
i=1([dx]2i + [ds]2i ) ≤ 4(1 + 2κ)δ2 , ‖dx‖ ≤

2
√

1 + 2κ δ, and ‖ds‖ ≤ 2
√

1 + 2κ δ.

After a damped step for fixed µ we have

x+ = x+ α∆x, s+ = s+ α∆s.

Then by (3), we have x+ = x
(
e+ α∆x

x

)
= x

(
e+ αdxv

)
= x

v (v + αdx), s+ =
s
(
e+ α∆s

s

)
= s

(
e+ αdsv

)
= s

v (v + αds). Then we get v2
+ = x+s+

µ = (v +
αdx)(v + αds). Throughout the paper we assume that the step size α is such
that the coordinates of the vectors v+αdx and v+αds are positive. Since ψ(v)
is exponentially convexity, we have

Ψ(v+) = Ψ(
√

(v + αdx)(v + αds) ) ≤ 1
2

(Ψ(v + αdx) + Ψ(v + αds) ).

For given µ > 0 by letting f(α) be the difference of the new and old proximity
measures, i.e.

f(α) = Ψ(v+)−Ψ(v).
Then we have

f(α) ≤ f1(α),
where f1(α) := 1

2 (Ψ(v + αdx) + Ψ(v + αds))−Ψ(v). Note that f(0) = f1(0) =
0. By taking the derivative of f1(α) with respect to α, we have f

′

1(α) =
1
2

∑n
i=1(ψ

′
(vi + α[dx]i)[dx]i + ψ

′
(vi + α[ds]i)[ds]i). From (5) and the definition

of δ,

f
′

1(0) =
1
2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ2.(13)

By taking the derivative of f
′

1(α) with respect to α, we have

f
′′

1 (α) =
1
2

n∑
i=1

(ψ
′′
(vi + α[dx]i)[dx]2i + ψ

′′
(vi + α[ds]i)[ds]2i ).(14)

To compute the upper bound for the difference of the new and old proximity
measures, we need the following technical lemmas.

Lemma 4.2 (Lemma 4.3 in [2]). f
′′

1 (α) ≤ 2(1+2κ) δ2ψ
′′
(vmin−2α

√
1 + 2κ δ).

Lemma 4.3 (Lemma 4.4 in [2]). f
′

1(α) ≤ 0 if α is satisfying

−ψ′(vmin − 2αδ
√

1 + 2κ) + ψ
′
(vmin) ≤ 2δ√

1 + 2κ
.(15)

In the following lemma, we compute the feasible step size α such that the
proximity measure is decreasing when we take a new iterate for fixed µ.

Lemma 4.4 (Lemma 4.5 in [2]). Let ρ : [0,∞) → (0, 1] denote the inverse
function of the restriction of − 1

2ψ
′
(t) to the interval (0, 1]. Then the largest

step size α which satisfies (15) is given by

ᾱ :=
1

2δ
√

1 + 2κ

(
ρ(δ)− ρ

((
1 +

1√
1 + 2κ

)
δ

))
.(16)
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In the following lemma we compute the lower bound for ᾱ in Lemma 4.4.

Lemma 4.5. Let ρ and ᾱ be as defined in Lemma 4.4. Then we have

ᾱ ≥ 1
1 + 2κ

1
ψ′′(ρ((1 + 1√

1+2κ
)δ))

.

Proof. By the definition of ρ, −ψ′(ρ(δ)) = 2δ. By taking the derivative with
respect to δ, we get −ψ′′(ρ(δ))ρ

′
(δ) = 2. So we have ρ

′
(δ) = − 2

ψ′′ (ρ(δ))
< 0 since

ψ
′′
> 0. Hence ρ is monotonically decreasing. By (16) and the fundamental

theorem of calculus, we have

ᾱ =
1

2δ
√

1 + 2κ
(ρ(δ)− ρ((1 +

1√
1 + 2κ

)δ))

=
1

2δ
√

1 + 2κ

∫ δ

(1+ 1√
1+2κ

)δ

ρ
′
(ξ)dξ

=
1

δ
√

1 + 2κ

∫ (1+ 1√
1+2κ

)δ

δ

dξ

ψ′′(ρ(ξ))
.

Since δ ≤ ξ ≤ (1 + 1√
1+2κ

)δ and ρ is monotonically decreasing,

ρ(ξ) ≥ ρ((1 +
1√

1 + 2κ
)δ).

Since ψ
′′

is monotonically decreasing, ψ
′′
(ρ(ξ)) ≤ ψ′′(ρ((1 + 1√

1+2κ
)δ)). Hence

1
ψ′′ (ρ(ξ))

≥ 1
ψ′′ (ρ((1+ 1√

1+2κ
)δ))

. Therefore we have

ᾱ =
1

1 + 2κ
1

ψ′′(ρ((1 + 1√
1+2κ

)δ))
.

�

Define

α̃ =
1

1 + 2κ
1

ψ′′(ρ((1 + 1√
1+2κ

)δ))
.(17)

Then we will use α̃ as the default step size in our Algorithm. Also by Lemma
4.5, ᾱ ≥ α̃. In the following, we want to evaluate the decrease of the proximity
function value. We cite the following result in [11] without proof.

Lemma 4.6 (Lemma 3.12 in [11]). Let h(t) be a twice differentiable convex
function with h(0) = 0, h

′
(0) < 0 and let h(t) attains its (global) minimum at

t∗ > 0. If h
′′
(t) is increasing for t ∈ [0, t∗], then h(t) ≤ th

′
(0)

2 , 0 ≤ t ≤ t∗.

Lemma 4.7 (Lemma 4.8 in [2]). If the step size α is such that α ≤ ᾱ, then
f(α) ≤ −αδ2.
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In the following theorem we have the upper bound for the difference f(α)
between new and old proximity measures.

Theorem 4.8. Let α̃ be a step size as defined in (17). Then we have

f(α̃) ≤ − 1
1 + 2κ

δ2

ψ′′(ρ((1 + 1√
1+2κ

)δ))
.(18)

Proof. By Lemma 4.5, α̃ ≤ ᾱ. By Lemma 4.7, we get the result. �

Lemma 4.9. The right hand side in (18) is monotonically decreasing in δ.

Proof. Let t = ρ(aδ) where a = 1 + 1√
1+2κ

. Then 0 < t ≤ 1 and −ψ′(ρ(aδ)) =

2aδ, i.e. 1
2ψ
′
(t) = − 1

2ψ
′
(ρ(aδ)) = aδ. Then

1
1 + 2κ

δ2

ψ′′(ρ((1 + 1√
1+2κ

)δ))
=

1
4a2(1 + 2κ)

ψ
′
(t)

2

ψ′′(t)
.

Define

g(t) =
1

4a2(1 + 2κ)
ψ
′
(t)

2

ψ′′(t)
.

Since ρ is monotonically decreasing, t is monotonically decreasing if δ increases.
Hence the right hand in (18) is monotonically decreasing in δ if and only if the
function g(t) is monotonically decreasing for 0 < t ≤ 1. Note that g(1) = 0

and g
′
(t) = 1

4a2(1+2κ)
ψ
′
(t){2ψ

′′
(t)2−ψ

′
(t)ψ

′′′
(t)}

ψ′′ (t)2 . Since ψ
′
(1) = 0 and ψ

′′
> 0,

ψ
′
(t) ≤ 0 for 0 < t ≤ 1. By Lemma 3.1 (iii), g(t) is monotonically decreasing

for 0 < t ≤ 1. Hence the lemma is proved. �

Note that at the start of outer iteration of the algorithm, just before the
update of µ with the factor 1 − θ, we have Ψ(v) ≤ τ. Due to the update of µ
the vector v is divided by the factor

√
1− θ, with 0 < θ < 1, which in general

leads to an increase in the value of Ψ(v). Then, during the subsequent inner
iterations, Ψ(v) decreases until it passes the threshold τ again. Hence, during
the process of the algorithm the largest values of Ψ(v) occur just after the
updates of µ.

In the following lemma we obtain an upper bound for Ψ(v).

Lemma 4.10. If Ψ(v) ≤ τ for 0 < θ < 1, then we have

ψ(
v√

1− θ
) ≤ n

(p+ 1)(1− θ) p+1
2

(
1 +

τ

n
+

√( τ
n

)2

+
2τ
n

)p+1

.
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Proof. By the definition of % and 1√
1−θ ≥ 1, 1√

1−θ%
(

Ψ(v)
n

)
≥ 1. By Theorem

3.2 in [1], Lemma 3.1 (v), and Lemma 3.2 (i), we have

ψ(
v√

1− θ
) ≤ nψ

%
(

Ψ(v)
n

)
√

1− θ


≤ n

(%(Ψ(v)
n ))p+1

(p+ 1)(1− θ) p+1
2

≤ n

(p+ 1)(1− θ) p+1
2

(
1 +

τ

n
+

√( τ
n

)2

+
2τ
n

)p+1

.

�

For notational convenience we denote the value of Ψ(v) after the µ-update
as Ψ0, then

Ψ0 ≤
n

(p+ 1)(1− θ) p+1
2

(
1 +

τ

n
+

√( τ
n

)2

+
2τ
n

)p+1

.(19)

Since τ = O(n) and θ = Θ(1), Ψ0 = O(n).
In the following theorem we provide a lower bound for δ in terms of the

proximity function Ψ(v).

Theorem 4.11. Let δ be the norm-based proximity measure as defined in (9).
If Ψ := Ψ(v) ≥ τ for τ ≥ 1, then we have

δ ≥ 1
6

Ψ
p
p+1 .

Proof. By Theorem 4.9 in [1] and e
1

%(Ψ)−1 ≤ 1 for %(Ψ) ≥ 1, we have

δ ≥ 1
2
ψ
′
(%(Ψ)) =

1
2

(
%(Ψ)p − e

1
%(Ψ)−1

%(Ψ)2

)

≥ 1
2

(
%(Ψ)p − 1

%(Ψ)2

)
≥ 1

2

(
%(Ψ)p − 1

%(Ψ)

)
.

Then by Lemma 3.2 (i), Ψ ≥ 1 and p ∈ [0, 1], we have

δ ≥ 1
2

(
((p+ 1)Ψ + 1)

p
p+1− 1

((p+ 1)Ψ + 1)
1
p+1

)
=

1
2

(
((p+ 1)Ψ + 1)

p+1
p+1 − 1

((p+ 1)Ψ + 1)
1
p+1

)

=
1
2

(p+ 1)Ψ

((p+ 1)Ψ + 1)
1
p+1
≥ (p+ 1)Ψ

2(2Ψ + 1)
1
p+1
≥ (p+ 1)Ψ

6Ψ
1
p+1

≥ 1
6

Ψ
p
p+1 .



COMPLEXITY ANALYSIS OF IPM FOR P∗(κ) LCPS 65

�

In the following we compute the total number of iterations of the algorithm
to get an ε-approximate solution. We need the following technical lemma to
obtain iteration bounds. For the proof the reader can refer [11].

Lemma 4.12 (Lemma A.2 in [1]). Let t0, t1, · · · , tK be a sequence of positive
numbers such that tk+1 ≤ tk − βt1−γk , k = 0, 1, · · · ,K − 1, where β > 0 and
0 < γ ≤ 1. Then K ≤ b t

γ
0
βγ c.

We define the value of Ψ(v) after the µ-update as Ψ0 and the subsequent
values in the same outer iteration are denoted as Ψk, k = 1, 2, · · · . Let K
denote the total number of inner iterations in the outer iteration. Then by the
definition of K, we have ΨK−1 > τ, 0 ≤ ΨK ≤ τ.

In the following lemma, we compute the upper bound for the total number
of inner iterations which we needed to return to the τ -neighborhood again. For
notational convenience we denote Ψ(v) by Ψ and a = 1 + 1√

1+2κ
.

Lemma 4.13. Let K be the total number of inner iterations in an outer iter-
ation. Then we have

K ≤ 216(1 + 2κ)(p+ 1)
(

1 + log
(

5
3

Ψ
p
p+1
0

))
Ψ

1
p+1
0 ,

where Ψ0 denotes the value of Ψ(v) after the µ-update.

Proof. From Theorem 4.8, Theorem 4.11 and Lemma 4.9, we have

f(α̃) ≤ − 1
1 + 2κ

δ2

ψ′′(ρ(aδ))
≤ − 1

36(1 + 2κ)
Ψ

2p
p+1

ψ′′(ρ(a6 Ψ
p
p+1 ))

.

Let ρ
(

1 + a
3 Ψ

p
p+1

)
= t. Then by definition of ρ,

1 +
a

3
Ψ

p
p+1 =

e
1
t−1

t2
.(20)

By Lemma 3.2 (ii) and (11), we have

1 ≥ ρ
(a

6
Ψ

p
p+1

)
≥ ρ

(
1 +

a

3
Ψ

p
p+1

)
= t ≥ 1

1 + log
(

1 + a
3 Ψ

p
p+1

) .(21)

Then by ψ
′′′
< 0 and (21), we get

f(α̃) ≤ − 1
36(1 + 2κ)

Ψ
2p
p+1

ψ′′(ρ(1 + a
3 Ψ

p
p+1 ))

= − 1
36(1 + 2κ)

Ψ
2p
p+1

ptp−1 + 1+2t
t4 e

1
t−1

.

Using the fact 0 < t ≤ 1, (20) and (21), we have

ptp−1 +
1 + 2t
t4

e
1
t−1 ≤ ptp−1 +

3
t4
e

1
t−1 ≤ ptp−1 +

3(1 + a
3 Ψ

p
p+1 )

t2
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≤ p
(

1 + log
(

1 +
a

3
Ψ

p
p+1

))1−p
+ 3(1 +

a

3
Ψ

p
p+1 )

(
1 + log

(
1 +

a

3
Ψ

p
p+1

))2

.

Without loss of generality we may assume that Ψ0 ≥ Ψ ≥ τ ≥ 1. Since a =
1 + 1√

1+2κ
≤ 2, we have 1 + a

3 Ψ
p
p+1 ≤ (1 + 2

3 )Ψ
p
p+1 = 5

3Ψ
p
p+1 . Then we have

ptp−1 +
1 + 2t
t4

e
1
t−1 ≤ p

(
1 + log

(
5
3

Ψ
p
p+1

))1−p

+ 5Ψ
p
p+1

(
1 + log

(
5
3

Ψ
p
p+1

))2

≤ 6Ψ
p
p+1

(
1 + log

(
5
3

Ψ
p
p+1
0

))2

.

Thus

f(α̃) ≤ − 1
216(1 + 2κ)

Ψ
p
p+1(

1 + log
(

5
3Ψ

p
p+1
0

))2 .

This implies that Ψk+1 ≤ Ψk − βΨk
1−γ , k = 0, 1, 2, · · · ,K − 1, where

β =
1

216(1 + 2κ)
(

1 + log
(

5
3Ψ

p
p+1
0

))2 , γ =
1

p+ 1
.

Hence by Lemma 4.12, K is bounded above by

K ≤ Ψγ
0

βγ
= 216(1 + 2κ)(p+ 1)

(
1 + log

(
5
3

Ψ
p
p+1
0

))2

Ψ
1
p+1
0 .(22)

This completes the proof. �

From (19), we have

Ψ0 ≤
n

(p+ 1)(1− θ) p+1
2

(
1 +

τ

n
+

√( τ
n

)2

+
2τ
n

)p+1

.

From (22), we have

K ≤ 216(1 + 2κ)(p+ 1)
p
p+1

n
1
p+1

√
1− θ

(
1 +

τ

n
+

√( τ
n

)2

+
2τ
n

)
.

The upper bound for the total number of iterations is obtained by multiplying
the number K by the number of central path parameter updates. If the central
path parameter µ has the initial value µ0 and is updated by multiplying 1− θ,
with 0 < θ < 1, then after at most

d 1
θ

log
nµ0

ε
e

iterations we have nµ ≤ ε. So we obtain the main result.
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Theorem 4.14. Let a P∗(κ) linear complementarity problem be given, where
κ ≥ 0. Assume that a strictly feasible starting point (x0, s0) is given with
Ψ(x0, s0, µ0) ≤ τ for some µ0 > 0. Then the total number of iterations to get
an ε-approximate solution for the algorithm is bounded above by

d 216(1 + 2κ)(p+ 1)
p
p+1

n
1
p+1

√
1− θ

(
1 +

τ

n
+

√( τ
n

)2

+
2τ
n

)
ed 1

θ
log

nµ0

ε
e.

Remark 4.15. Since τ = O(n) and θ = Θ(1), the algorithm has O((1 +
2κ)(log n)2n

1
p+1 log n

ε ) complexity.
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