THREE-STEP MEAN VALUE ITERATIVE SCHEME FOR VARIATIONAL INCLUSIONS AND NONEXPANSIVE MAPPINGS

  • Published : 2009.05.31

Abstract

In this paper, we present the three-step mean value iterative scheme and prove that the iteration sequence converge strongly to a common element of the set of fixed points of a nonexpansive mappings and the set of the solutions of the variational inclusions under some mild conditions. The results presented in this paper extend, generalize and improve the results of Noor and Huang and some others.

Keywords

References

  1. C.Baiocchi,A.Capelo, Variational and Quasi Variational Inequalities, John Wiley and Sons, New York, 1984.
  2. A. Bnouhachem and M.A. Noor, Three-step iterative algorithms for mixed variational inequalities, Appl.Math.Comput. 183 (2006), 322-327. https://doi.org/10.1016/j.amc.2006.05.055
  3. A. Bnouhachem and M.A. Noor, Numerical comparison between prediction-correction methods for general variational inequalities, Appl.Math.Comput. 186 (2007), 496-505. https://doi.org/10.1016/j.amc.2006.08.001
  4. H. Brezis, Operateurs Maximaux Monotone et Semigroups de Contractions dan Espaces de Hilbert North-Holland,Amsterdam, (1973).
  5. M.A. Noor, An extraresolvent method for monotone mixed variational inequalities, Math.Comput.Model. 29(7)(1999), 95-100.
  6. M.A. Noor, Some developments in general variational inequalities, Appl.Math.Comput. 152 (2004), 199-277. https://doi.org/10.1016/S0096-3003(03)00558-7
  7. M.A. Noor, General variational inequalities and nonexpansive mappings, J. Math. Anal. Appl.331, (2007), 810-822. https://doi.org/10.1016/j.jmaa.2006.09.039
  8. M.A. Noor and A. Bnouhachem, On an iterative algorithm for general variational inequalities, Appl.Math.Comput. 185 (2007), 155-168. https://doi.org/10.1016/j.amc.2006.07.018
  9. M.A. Noor and Z. Huang, Some resolvent iterative methods for variational inclusions and nonexpansive mappings, Appl.Math.Comput. 197(2007),267-275 .
  10. G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, C.R.Acad.Sci.Paris 258 (1964), 4413-4416.
  11. X.L.Weng, Fixed point iteration for local strictly pseudocontractive, Proc.Am.Math.Soc. 113 (1991), 727-731. https://doi.org/10.1090/S0002-9939-1991-1086345-8