THE RIESZ THEOREM IN FUZZY n-NORMED LINEAR SPACES

  • Kavikumar, J. (Centre for Sciences, Universiti Tun Hussein Onn Malaysia) ;
  • Jun, Young-Bae (Department of Mathematics Education (and RINS), Gyeonsang National University) ;
  • Khamis, Azme (Centre for Sciences, Universiti Tun Hussein Onn Malaysia)
  • Published : 2009.05.31

Abstract

The primary purpose of this paper is to prove the fuzzy version of Riesz theorem in n-normed linear space as a generalization of linear n-normed space. Also we study some properties of fuzzy n-norm and introduce a concept of fuzzy anti n-norm.

Keywords

References

  1. T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, The Journal of Fuzzy Mathematics, 11 (2003), no. 3, 687 - 705.
  2. S. C. Chang and J. N. Mordesen, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc., 86 (1994), 429 - 436.
  3. C. Felbin, Finite dimensional fuzzy normed linear spaces II, Journal of Analysis, (1999), 117 - 131.
  4. S. Gahler, Unter Suchyngen Uber Veralla gemeinerte m-metrische Raume I, Math. Nachr., 40 (1969), 165 - 189. https://doi.org/10.1002/mana.19690400114
  5. H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math & Math. Sci., 27 (2001), no. 10, 631 - 639. https://doi.org/10.1155/S0161171201010675
  6. S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math., 29 (1996), no. 4, 739 - 744.
  7. S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 40 (1969), 165 - 189.
  8. R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten, 21 (1997), no. 47, 81 - 102.
  9. A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299 - 319 https://doi.org/10.1002/mana.19891400121
  10. AL. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. & Math. Sci., (2005), no. 24, 3963 - 3977.
  11. C. Park and H. Y. Chu, The Riesz theorem in linear n-normed spaces, Journal of the Chungcheong Math. Soc., 19 (2006), no. 2, 207 - 211.
  12. G. S. Rhie, B. M. Choi and S. K. Dong, On the completeness of fuzzy normed linear spaces, Math. Japonica, 45 (1997), no. 1, 33 - 37.
  13. F. Riesz, Uber lineare Funktionalgleichungen, Acta Math, 41 (1918), 71 - 98. https://doi.org/10.1007/BF02422940
  14. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314 - 334.
  15. S. Vijayabalaji and N. Thillaigovindan, Complete fuzzy n-normed linear space, Journal of Fund. Sci., 3 (2007), 119 - 126.