A STRUCTURE THEOREM AND A CLASSIFICATION OF AN INFINITE LOCALLY FINITE PLANAR GRAPH

  • 발행 : 2009.05.31

초록

In this paper we first present a structure theorem for an infinite locally finite 3-connected VAP-free planar graph, and in connection with this result we study a possible classification of infinite locally finite planar graphs by reducing modulo finiteness.

키워드

참고문헌

  1. M. Chastand and N. Polat, Reconstruction of infinite locally finite connected graphs, Disc. Math. 270 (2003), 61–98. https://doi.org/10.1016/S0012-365X(02)00867-1
  2. R. Diestel, Graph Theory (3nd Ed.), Springer-Verlag, Heidelberg, 2005.
  3. R. Diestel and P. Sprussel, The homology of locally finite graphs with ends, to appear.
  4. R. Halin, Uber unendliche Wege in Graphen, Math. Ann. 157 (1964), 125–137. https://doi.org/10.1007/BF01362670
  5. H. Jung, Wurzelbaume und unendliche Wege in Graphen, Math. Nachr. 41 (1969), 1–22. https://doi.org/10.1002/mana.19690410102
  6. H. Jung, Structural properties for certain classes of infinite planar graphs, J. Appl. Math.& computing 13 (2004), 105–115.
  7. H. Jung, An extension of Salle's theorem to infinite locally finite VAP-free plane graphs,J. Appl. Math. & computing 22 (2006), 83–93. https://doi.org/10.1007/BF02896462
  8. C. Thomassen, Planarity and duality of finite and infinite graphs, J. Comb. Th. (B) 29 (1980), 244–271.