• Title/Summary/Keyword: Semicycle structure

Search Result 3, Processing Time 0.017 seconds

A STRUCTURE THEOREM AND A CLASSIFICATION OF AN INFINITE LOCALLY FINITE PLANAR GRAPH

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.531-539
    • /
    • 2009
  • In this paper we first present a structure theorem for an infinite locally finite 3-connected VAP-free planar graph, and in connection with this result we study a possible classification of infinite locally finite planar graphs by reducing modulo finiteness.

  • PDF

THE RULE OF TRAJECTORY STRUCTURE AND GLOBAL ASYMPTOTIC STABILITY FOR A FOURTH-ORDER RATIONAL DIFFERENCE EQUATION

  • Li, Xianyi;Agarwal, Ravi P.
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.787-797
    • /
    • 2007
  • In this paper, the following fourth-order rational difference equation $$x_{n+1}=\frac{{x_n^b}+x_n-2x_{n-3}^b+a}{{x_n^bx_{n-2}+x_{n-3}^b+a}$$, n=0, 1, 2,..., where a, b ${\in}$ [0, ${\infty}$) and the initial values $X_{-3},\;X_{-2},\;X_{-1},\;X_0\;{\in}\;(0,\;{\infty})$, is considered and the rule of its trajectory structure is described clearly out. Mainly, the lengths of positive and negative semicycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is $1^+,\;1^-,\;1^+,\;4^-,\;3^+,\;1^-,\;2^+,\;2^-$ in a period, by which the positive equilibrium point of the equation is verified to be globally asymptotically stable.

STRUCTURAL PROPERTIES FOR CERTAIN GLASSES OF INFINITE PLANAR GRAPHS

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.105-115
    • /
    • 2003
  • An infinite locally finite plane graph is called an LV-graph if it is 3-connected and VAP-free. If an LV-graph G contains no unbounded faces, then we say that G is a 3LV-graph. In this paper, a structure theorem for an LV-graph concerning the existence of a sequence of systems of paths exhausting the whole graph is presented. Combining this theorem with the early result of the author, we obtain a necessary and sufficient conditions for an infinite VAP-free planar graph to be a 3LV-graph as well as an LV-graph. These theorems generalize the characterization theorem of Thomassen for infinite triangulations.