DOI QR코드

DOI QR Code

Polymeric Waveguides with Bragg Gratings in the Middle of the Core Layer

  • Jeong, In-Soek (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, Hae-Ryeong (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Sang-Won (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Myung-Hyun (School of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2009.05.18
  • 심사 : 2009.06.11
  • 발행 : 2009.06.25

초록

In this paper we proposed a new Bragg grating waveguide in order to improve reflectivity and to achieve compactness. Bragg gratings with various thicknesses were engraved in the middle of the core layer with a length of 3 mm. For the sake of cost-effectiveness, the $3^{rd}$ order Bragg grating waveguides were fabricated via conventional photolithography. The maximum reflectivities for the fixed width waveguide of $6{\mu}m$ with the 0.1 and $0.3{\mu}m$-thick Bragg gratings were, -13.14 and -6.25 dB, respectively, and the Bragg wavelengths were 1562.28, 1564.10 nm, respectively. A slight increase in the Bragg grating thickness can result in a remarkable reduction in the length of the Bragg grating waveguide with a fixed reflectivity.

키워드

참고문헌

  1. M. C. Oh, M. H. Lee, J. H. Ahn, H. J. Lee, and S. G. Han, 'Polymeric wavelength filters with polymer gratings,' Appl. Phys. Lett. 72, 1559.1561 (1998) https://doi.org/10.1063/1.121114
  2. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, 'Thermo-optic planar polymer Bragg grating OADM's with broad tuning range,' IEEE Photon. Technol. Lett. 11, 448.450 (1999) https://doi.org/10.1109/68.752544
  3. Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, and A. E. Willner, 'Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped fiber Bragg gratings,' J. Lightwave Tech. 20, 2239.2245 (2002) https://doi.org/10.1109/JLT.2002.806773
  4. C. H. Kim, J. K. Bae, K. I. Lee, and S. B. Lee, 'Performance evaluation of a tunable dispersion compensator based on strain-chirped fiber Bragg grating in a 40 Gb/s transmission,' J. Opt. Soc. Korea 12, 244-248 (2008) https://doi.org/10.3807/JOSK.2008.12.4.244
  5. S. S. Lee and H. D. Chae, 'Continuous photonic microwave true-time delay using tapered chirped fiber Bragg grating,' Electron. Lett. 41, 690.691 (2005) https://doi.org/10.1049/el:20050982
  6. S. C. Kim, 'Performance analysis of chromatic dispersion compensation of a chirped fiber grating on a differential phase-shift-keyed transmission,' J. Opt. Soc. Korea 13, 107-111 (2009) https://doi.org/10.3807/JOSK.2009.13.1.107
  7. C. Greiner, T. W. Mossberg, and D. Iazikov, 'Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings,' Opt. Lett. 29, 806.808 (2004) https://doi.org/10.1364/OL.29.000806
  8. S. Sato, Y. Ishigami, S. Takasugi, H. Arai, and H. Ohkubo, 'Fiber/PLC Bragg grating devices for WDM transmission systems,' Hitachi Cable Review 20, 11-14 (2001)
  9. H. Lee, G. W. Kim, J. O. Park, S. H. Kim, and Y. C. Chung, 'Widely tunable wavelength-selective reflector using polymer waveguide double-ring-resonator add/drop filter and loop-back mirror,' J. Opt. Soc. Korea 12, 157-161 (2008) https://doi.org/10.3807/JOSK.2008.12.3.157
  10. J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. L. Lee, G. Jeong, and B. W. Kim, 'Tunable external cavity laser based on polymer waveguide platform for WDM access network,' IEEE Photon. Technol. Lett. 17, 1956-1958 (2005) https://doi.org/10.1109/LPT.2005.853250
  11. G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. R. Lee, and B. W. Kim, 'Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,' IEEE Photon. Technol. Lett. 18, 2102-2104 (2006) https://doi.org/10.1109/LPT.2006.883184
  12. J. H. Song, J. H. Lim, R. K. Kim, K. S. Lee, K. Y. Kim, J. Cho, D. K. Han, S. T. Jung, Y. K. Oh, and D. H. Jang, 'Bragg grating-assisted WDM filter for integrated optical triplexer transceivers,' IEEE Photon. Technol. Lett. 17, 2067-2068 (2005) https://doi.org/10.1109/LPT.2005.859181
  13. M. S. Kim, J. J. Ju, S. K. Park, M. H Lee, S. H. Kim, and K. D. Lee, 'Tailoring chirp characteristics of waveguide Bragg gratings using tapered core profiles,' IEEE Photon. Technol. Lett. 18, 2413-2415 (2006) https://doi.org/10.1109/LPT.2006.886132
  14. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, Oxford, UK, 1997), Chapter 13
  15. J. U. Shin, S. H. Oh, Y. J. Park, S. H. Park, Y. T. Han, H. K. Sung, and K. R. Oh, 'External cavity lasers composed of higher order gratings and SLDs integrated on PLC platform,' ETRI Journal 29, 452-456 (2007) https://doi.org/10.4218/etrij.07.0106.0285
  16. W. H. Wong and E. Y. B. Pun, 'Polymeric waveguide wavelength filters using electron-beam direct writing,' Appl. Phys. Lett. 79, 3576.3578 (2001) https://doi.org/10.1063/1.1421229

피인용 문헌

  1. Third-order polymer waveguide Bragg grating array by using conventional contact lithography vol.330, 2014, https://doi.org/10.1016/j.optcom.2014.05.037
  2. Analysis of a Triangular-shaped Plasmonic Metal-Insulator-Metal Bragg Grating Waveguide vol.15, pp.2, 2011, https://doi.org/10.3807/JOSK.2011.15.2.118
  3. Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect vol.18, pp.23, 2010, https://doi.org/10.1364/OE.18.024213
  4. Gold Stripe Optical Waveguides Fabricated by a Novel Double-Layered Liftoff Process vol.31, pp.6, 2009, https://doi.org/10.4218/etrij.09.1209.0042