Relative Immigration Activity of Epilithic Diatom in Sum River : Comparison of Natural and Artificial Substrate

섬강수계 부착규조의 유입능 특성: 자연기질과 인공기질의 비교

  • Yoon, Sung-Ae (Department of Environmental Science, Konkuk University) ;
  • Kim, Nan-Young (Department of Environmental Science, Konkuk University) ;
  • Byoen, Myeong-Seop (Water Environment Management Department, National Institute of Environment Research) ;
  • Kim, Baik-Ho (Department of Environmental Science, Konkuk University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • Published : 2009.03.31

Abstract

Effects of substrates on the relative immigration activities (RIAs) of epilithic diatoms were examined in Sum River, a tributary of South Han River, Korea. Two hundreds of tile substrates coated with 5% agar were deposited at seven study stations (30 tiles per site) for one month from March 7 to April 7, 2008. Water sampling, physico-chemical factor measurement, and diatom analysis were performed in the field and laboratory. Over the study, major epilithic diatom species were Nitzschia amphibia, Navicula subminuscula, Cymbella minuta in both the natural and artificial substrates. Two dominant species, Nitzschia amphibia and Cymbella minuta often found at seven stations. Among all observed taxa, Nav. subminuscula and Caloneis silicula showed the highest RIA, with the value over 15 throughout the study. Regarding the algal morphology, the biraphe type species showed higher RIA than any other morph, while they comprised over 55% of total biomass, indicating a density effect. Additionally, a significant relationship between RIA and 20-day deposited substrate (p<0.05) showed in two diatom species, Nitzschia fonticola, Gomphonema quadripunctatum, which showed relatively high RIAs. These results indicate that the relative immigration activities of epilithic diatom species can be influenced by algal density in the water and substrate, nutrients, and deposited time at least 20 days.

남한강 상류인 섬강수계의 부착규조 군집 및 출현종의 특성을 알아보고자 하천방향으로 수계 내 7개 지점을 선정하고, 자연기질과 인공기질에서 부착규조의 유입능(RIA) 및 기초환경조사를 실시하였다. 조사결과, 부착 규조 군집 종은 모든 기질에서 N. amphibia, Nav. subminuscula, C. minuta 등이 우점하였고, N. amphibia, C. minuta는 전 지점에 고르게 분포하였다. 조사기간 중 가장 높은 유입능을 보인 종은 Nav. subminuscula, C. silicula로 RIA 15 이상이었다. 모든 조사지점에서 높은 유입능을 보인 종은 복배선 형태를 보였으며, 각 기질에서 55% 이상의 높은 밀도를 나타냈다. 비교적 높은 유입능을 보인 N. fonticola, G. quadripunctatum은 각각 주변수의 영양염(p<0.05)과 20일 동안 배양한 인공기질에(p<0.05) 높은 상관성을 보였다. 이상의 결과를 종합하면 섬강수계의 부착규조 유입능은 조류밀도와 영양염에 의해 영향을 받으며, 인공기질의 배양기간은 20일이 적당한 것으로 판단되었다.

Keywords

References

  1. Marine Biology 강정훈. 1998. 해수중 인공기질표면에 대한 미세조류의 부착과 성장에 관한 연구. 서울대학교 석사학위 논문
  2. 김기동, 서정범, 서용찬. 2007. 섬강, 원주천, 매지천 그리고 주요 유입지천의 수질조사. 한국환경분석학회지 10(4): 191-196
  3. 심재형, 강정훈, 조병철, 김웅서. 1998. 해수에 잠긴 인공기질 표면에서 미세조류의 부착과 성장: I. 부착 및 천이. 한국해양학회지 3(4): 249-260
  4. 윤성애, 김난영, 김백호, 황순진. 2008. 저온기 부영양 수계 규조군집의 유입능. 하천호수학회지 41(3): 311-319
  5. 정연태, 최민규, 김백호, 위인선, 이종빈. 1996. 수질오염 판정을위한 기법 개발(I) 부착조류 군체화에 미치는 기질특이성연구. 환경생물 14(1): 95-111
  6. 정 준. 1993. 한국담수조류도감. 아카데미서적, 서울
  7. 환경부. 1997. 수질오염공정시험법. 동화기술, 서울
  8. 허인량, 오근찬, 최지용. 1998. 섬강유역 환경용량 및 수질 Modeling. 한국환경위생학회지 24(1): 80-86
  9. APHA. 1995. Standard methods for the examination of water and wastewater, 18th Ed. American Public Health Association, Washington, D.C
  10. Azim, M.E., M.C.J. Verdegem, A.A. van Dam and M.C.M. Beveridge. 2005. Periphyton: Ecology, Exploitation and Management. CABI Publishing
  11. Biggs, B.J.F. 1996. Patterns in benthic algae of streams, p. 31-56. In: Algal Ecology: Freshwater Benthic Ecosystems (Stevenson, R.J., M.L. Bothwell and R.L. Lowe, eds.). Academic Press, San Diego, California
  12. Cushing, C.E. and J.D. Allan. 2001. Streams: their Ecology and Life. Academic Press, C
  13. Herder-Brouwer, S.J. 1975. The development of periphyton on artificial substrates. Aquatic Ecology 9(2): 81-86
  14. Hodoki, Y. 2005. Bacteria biofilm encourages algal immigration onto substrata in lotic systems. Hydrobiologia 539 (1): 27-34 https://doi.org/10.1007/s10750-004-3082-5
  15. Hudon, C. and E. Bourget. 1981. Initial colonization of artificial substrate: community development and structure studied by scaning electron microscopy. Canadian Journal of Fish and Aquatic Science 38(11): 1371-1384 https://doi.org/10.1139/f81-184
  16. Khatoon, H., F. Yusoff, S. Banerjee, M. Shariff and J.S. Bujang. 2007. Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Journal of Aquaculture 273(4): 470-477 https://doi.org/10.1016/j.aquaculture.2007.10.040
  17. Krammer, K. and H. Lange-Bertalot. 2007a. S$\ddot{u}$sswasserflora von Mitteleuropa, Band 2/1: Bacillariophyceae 1. Teil: Naviculaceae (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany
  18. Krammer, K. and H. Lange-Bertalot. 2007b. S$\ddot{u}$sswasserflora von Mitteleuropa, Band 2/1: Bacillariophyceae 1. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany
  19. McCormick, P.V. and R.J. Stevenson. 1998. Periphyton as a tool for ecological assessment and management in the florida everglades. Journal of Phycology 34(5): 726-733 https://doi.org/10.1046/j.1529-8817.1998.340726.x
  20. M$\ddot{u}$ller-Haeckel, A. 1966. Diatomeendrift in fliessgewassern. Hydrobiologia 28(1): 73-87 https://doi.org/10.1007/BF00144940
  21. Round, F.E., R.M. Crawford and D.G. Mann. 2007. The diatoms; Biology & Morphology of The genera. Cambridge University Press, UK
  22. Shankar, K.M. and C.V. Mohan. 2001. The potential of biofilm in aquaculture. World Aquaculture Society 32: 62-63
  23. Small, J.A., A. Bunn, C. McKinstry, A. Peacock and A.L. Miracle. 2008. Investigating freshwater periphyton community response to uranium with phospholipid fatty acid and denaturing gradient gel electrophoresis analyses. Journal of Environmental Radioactivity 99(4): 730-738 https://doi.org/10.1016/j.jenvrad.2007.09.009
  24. Stevenson, R.J. and C. Peterson. 1989. Variation in benthic diatom (Bacillariophyceae) immigration with habitat characteristics and cell morphology. Journal of Phycology 25(1): 120-129 https://doi.org/10.1111/j.0022-3646.1989.00120.x
  25. Stevenson, R.J., C.G. Peterson and D.B. Kirschtel. 1991. Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams. Journal of Phycology 27(1): 59-69 https://doi.org/10.1111/j.0022-3646.1991.00059.x
  26. Stevenson, R.J., M.L. Vothwell, R.L. Lowe and J.H. Thorp. 1996. Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, California
  27. Van Dam, A.A., M.C.M. Beveridge, M.E. Azim and M.C.J. Verdegem. 2002. The potential of fish production based on periphyton. Reviews in Fish Biology and Fisheries 12(1): 1-31 https://doi.org/10.1023/A:1022639805031
  28. Watanabe, T., K. Asai and A. Houki. 1986. Numerical estimation of organic pollution of flowing water by using the epilithic diatom assemblage-Diatom Assemblage Index (DAIpo). Science of the Total Environment 55: 209-218 https://doi.org/10.1016/0048-9697(86)90180-4
  29. Wetherbee, R., J.L. Lind, J. Burke and R.S. Quatrano. 1998. The first kiss: establishment and control of initial adhesion by raphid diatoms. Journal of Phycology 34(1): 9-15 https://doi.org/10.1046/j.1529-8817.1998.340009.x
  30. Wilbert, N. 1976. A standardized method for identifying and counting the vagile and sessile periphyton. Oecologia 24(4): 343-347 https://doi.org/10.1007/BF00381140