Comparison of Grazing Characteristics of a Freshwater Bivalve Unio douglasiae (Unionidae) on the Cold and Warm Phytoplankton Communities in Eutrophic Lake

부영양호수의 저온기와 고온기 식물플랑크톤에 대한 말조개의 섭식능 비교

  • Lee, Song-Hee (Department of Environmental Science, Konkuk University) ;
  • Baik, Soon-Ki (Department of Environmental Engineering, Dong shin University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University) ;
  • Kim, Baik-Ho (Department of Environmental Science, Konkuk University)
  • 이송희 (건국대학교 생명환경과학대학 환경과학과) ;
  • 백순기 (동신대학교 환경학과) ;
  • 황순진 (건국대학교 생명환경과학대학 환경과학과) ;
  • 김백호 (건국대학교 생명환경과학대학 환경과학과)
  • Published : 2009.03.31

Abstract

Grazing effects of a freshwater bivalve, Unio douglasiae, on both the phytoplankton communities of cold- and warm eutrophic lakes were examined in aquarium with sediment. The animal U. douglasiae used in the study was collected from the Gunsan (Jeonbuk), acclimatized in laboratory aquaria with washed sand from the mussel collection stream, and starved for $2{\sim}3$ days by the experiment. Grazing experiments were performed with the surface waters collected from Lake Ilgam (Seoul) in the cold period (March 31, 2008), and the warm period (June 19, 2008), respectively. Results clearly showed that the concentration of chlorophyll-a (chl-a) and algal abundance were decreased with the increase of mussel-treated density and treated-time. At the same animal density, U. douglasiae effectively decreased the chl-a of cold-lake water (CW), compared to warm-lake water (WW). Increasing the mussel density, the filtering rate (or algal abundance) of the mussel on the CW gradually decreased, while those of WW did not increase or decrease. Major phytoplankton species Synedra ulna and Stephanodiscus hantzschii, and Scenedesmus ecornis in CW, and those of Tetraedron regulare and Pediastrum simplex in WW, were quickly decreased after the mussel stocking. Interestingly, cyanobacterium Microcystis aeruginosa in WW, not dominant species, were less removed. These results suggest that a freshwater bivalve U. douglasiae have a strategic potential to control dense hibernal diatom or green algae, rather than the cyanobacterial bloom in eutrophic water.

서로 다른 두 시기의 부영양호(일감호) 현장수에 대한 한국산 말조개(U. douglasiae)의 섭식특성을 비교 조사하였다. 두 실험수 모두 패류밀도가 클수록 엽록소 a 감소가 뚜렷하였으며, 동일한 패류밀도에서는 저온기 현장수에서 엽록소 a 감소가 더 뚜렷하였다. 저온기 현장수에서는 패류 밀도에 따른 여과율 및 식물플랑크톤 현존량 변화가 뚜렷하였으나, 고온기 현장수에서는 두 패류 밀도의 여과율 및 식물플랑크톤 현존량 변화가 유사한 경향을 보였다. 각 출현종에 대한 말조개의 조류제어능은 저온기 현장수의 S. ulna와 S. hantzschii, 고온기 현장수의 S. ecornis, T. regulare, P. simplex는 빠른 시간 내에 감소하는 경향을 보였으나, 저온기 현장수의 S. ecornis는 서서히 감소하는 경향을 보였으며, 고온기 현장수의 M. aeruginosa는 제어효율이 가장 좋지 않았다. 따라서 한국산 말조개는 저온기 규조류 대발생 수역의 생태친화적 제어에 효과적인 생물제재로서 활용이 가능할 것으로 판단되었다.

Keywords

References

  1. 권애랑, 박철휘. 2003. 수생식물을 이용한 수질정화에 관한 연구. 대한환경공학회지 25: 415-420
  2. 김호섭, 박제철, 황순진. 2003. 수심이 얕은 부영양 인공호(일감호)의 동식물플랑크톤 동태학. 한국육수학회지 36: 286-294
  3. 박정환. 2004. 담수산 이매패류가 수생태계의 생태학적 수준의 변화에 미치는 영향에 관한 연구: Mesocosm 연구. 건국대석사논문
  4. 이송희, 황순진, 김백호. 2008a. 저온기 부영양 수계의 규조 발생에 대한 말조개의 섭식특성. 한국하천호수학회지 41: 237-246
  5. 이송희, 황순진, 김백호. 2008b. 저온기 규조 발생억제를 위한 패류의 혼합적용. 한국하천호수학회지 41: 402-411
  6. 이연주, 김백호, 김난영, 엄한용, 황순진. 2008c. 수온, 먹이농도, 패각 크기가 Microcystis aeruginosa에 대한 말조개의 여 과율 및 배설물 생산에 미치는 영향. 한국하천호수학회지 41(S): 61-67
  7. 환경부. 2004. 수질오염공정시험방법
  8. APHA, 1995. Standards methods of the examination of water and wastewater (19th ED). American Public Health Association, Washington, D.C
  9. Bastviken, D.T.E., N.F. Caraco and J.J. Cole. 1998. Experimental Experimentalmeasurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition. Freshwater Biology 39: 375-386 https://doi.org/10.1046/j.1365-2427.1998.00283.x
  10. Cucci, T.L., S.E. Shumway, R.C. Newell, R. Selvin, R.R.L. Guillard and C.M. Yentsch. 1985. Flow cytometry: a new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Marine Ecology Progress Series 24: 201-204 https://doi.org/10.3354/meps024201
  11. Dame, R.F. 1993. Bivalve filter feeders in estuarine and coastal processes. NATO ASI Series G: Ecol. Sci. vol. 33, Springer
  12. Defossez, J.M. and A.J.S. Hawkins. 1997. Selective feeding in shellfish: size-dependent rejection of large particles within pseudofaeces from Mytilus edulis, Ruditapes philippinarum and Tapes decussates. Marine Biology 129: 139-147 https://doi.org/10.1007/s002270050154
  13. Dupuy, C., S.L. Gall, J. Hartmann and M.B. Hassen. 1999. Protists as a trophic link between picocyanobacteria and the filter-feeding bivalve Crassostrea gigas. Institut Oceanographique p. 533-540
  14. Engstr$\ddot{o}$m, J., M. Viherluoto and M. Viitasalo. 2001. Effects of toxic and non-toxic cyanobacteria on grazing, zooplanktivory and survival of the mysid shrimp Mysis mixta. Journal of Experimental Marine Biology Ecology 257(2): 269-280 https://doi.org/10.1016/S0022-0981(00)00339-7
  15. Heath, R.T., G.L. Fahnenstiel, W.S. Gardner, J.F. Cavaletto and S.J. Hwang. 1995. Ecosystem-level effects of zebra mussel (Dreissena polymorpha): An enclosure experiment in Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 501-516 https://doi.org/10.1016/S0380-1330(95)71062-0
  16. Hill, B.H. 1986. The role of aquatic macrophytes in nutrient flow regulation in lotic ecosystems. American Society for testing and materials. Philandelphia p. 157-167
  17. Hwang, S.J. 1996. Effects of zebra mussel (Dreissena polymorpha) on phytoplankton and bacterioplankton: Evidence for size-selective grazing. Korean Journal of Limnology 29: 363-378
  18. Kemp, W.M., P.A. Sampou, J.M. Caffrey, M. Mayer, K. Henriksen and W.R. Boynton. 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnology and Oceanography 35: 1545-1563 https://doi.org/10.4319/lo.1990.35.7.1545
  19. Kilham, P., S. Kilham and R.E. Hecky. 1986. Hypothesized resource relationships among African planktonic diatoms. Limnology and Oceanography 31: 1169-1181 https://doi.org/10.4319/lo.1986.31.6.1169
  20. Kim, B.H. and S.O. Hwang. 2004. The structure of the plankton community and the cyanobacteria bloom during the rainy season in mesoeutrophic lake (Lake Juam), Korea. Korean Journal of Sanitation 19: 51-59
  21. Leach, J.H. 1993. Impacts of the zebra mussel (Dreissena polymorpha) on water quality and fish spawning reefs in western Lake Erie, p. 381-397. In: Zebra Mussels: Biology, Impact, and Control (Nalepa, T.F. and D.W. Schloesser, eds.). Lewis Publishers, Boca Raton. FL
  22. Naddafi, R., K. Pettersson and P. Eklov. 2007. The effect of seasonal variation in selective feeding by zebra mussel (Dreissena polymorpha) on phytoplankton community composition. Freshwater Biology 52: 823-842 https://doi.org/10.1111/j.1365-2427.2007.01732.x
  23. Newell, C.R., S.E. Shumway, T.L. Cucci and R. Selvin. 1989. The effects of natural seston particle size and type on feeding rates, feeding selectivity and food resource availability for the mussel Mytilus edulis Linnaeus, 1758 atbottom culture sites in Maine. Journal of Shellfish Research 8(1): 187-196
  24. Nicholls, K.H. and G.J. Hopkins. 1993. Recent changes in Lake Erie (north shore) phytoplankton: cumulative impacts of phosphorus loading reductions and the zebra mussel introduction. Journal of Great Lakes Research 19: 637-647 https://doi.org/10.1016/S0380-1330(93)71251-4
  25. Norkko, A., J.E. Hewitt, S.F. Thrush and G.A. Funnell. 2001. Benthic pelagic coupling and suspension-feeding bivalves: linking site-specific sediment flux and biodeposition to benthic community structure. Limnology and Oceanography 46: 2067-2072 https://doi.org/10.4319/lo.2001.46.8.2067
  26. Ostroumov, S.A. 2002. Biodiversity protection and quality of water: the role of feedbacks in ecosystems. Doklady Biological Sciences 382: 1-6 https://doi.org/10.1023/A:1014475702017
  27. Shumway, S.E., T.L. Cucci, R.C. Newell and C.M. Yentsch. 1985. Particle selection, ingestion, and absorption in filter-feeding bivalves. Journal of Experimental Marine Biology Ecology 91: 77-92 https://doi.org/10.1016/0022-0981(85)90222-9
  28. Shumway, S.E. and T.L. Cucci. 1987. The effects of the toxic dinoflagellate Protogonyaulax tamarensis on the feeding and behaviour of bivalve molluscs. Aquatic Toxicology 10: 9-27 https://doi.org/10.1016/0166-445X(87)90024-5
  29. Shumway, S.E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. Journal of World Aquaculture Society 21: 65-104 https://doi.org/10.1111/j.1749-7345.1990.tb00529.x
  30. Soto, D. and G. Mena. 1999. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171: 65-81 https://doi.org/10.1016/S0044-8486(98)00420-7
  31. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv f$\ddot{u}$r Hydrobiologie 106: 433-471
  32. Stoeck, T. and B.P. Albers. 2000. Microbial biomass and activity in the vicinity of a mussel bed built up by the blue mussel Mytilus edulis. Helgoland Marine Research 54: 39-46 https://doi.org/10.1007/s101520050034
  33. Vanderploeg, H.A., J.R. Liebig, W.W. Carmichael, M.A. Agy, T.H. Johengen, G.F. Fahnenstiel and T.F. Nalepa. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (LakeHuron) and Lake Erie. Canadian Journal Fisheries and Aquatic Science 58: 1208-1221 https://doi.org/10.1139/cjfas-58-6-1208
  34. Van der Molen, D.T. and P.C.M. Boers. 1994. Influence of internal loading on phosphorus concentration in shallow lakes before and after reduction of the external loading. Hydrobiologia 275-276
  35. Viherluoto, M. and M. Viitasalo. 2001. Temporal variability in functional responses and prey selectivity of pelagic mysid Mysis mixta in natural prey assemblages. Marine Biology 138: 575-583 https://doi.org/10.1007/s002270000478
  36. Ward, J.E., J.S. Levinton, S.E. Shumway and T. Cucci. 1998. Particle sorting in bivalves: in vivo determination of the pallial organs of selection. Marine Biology 131: 283-292 https://doi.org/10.1007/s002270050321