DOI QR코드

DOI QR Code

Static tensional forces increase osteogenic gene expression in three-dimensional periodontal ligament cell culture

  • Ku, Seung-Jun (Department of Orthodontics, Seoul National University) ;
  • Chang, Young-Il (Department of Orthodontics, Seoul National University) ;
  • Chae, Chang-Hoon (Department of Oral and Maxillofacial Surgery, Hallym University) ;
  • Kim, Seong-Gon (Department of Oral and Maxillofacial Surgery, Hallym University) ;
  • Park, Young-Wook (Department of Oral and Maxillofacial Surgery, Kangnung-Wonju National University) ;
  • Jung, Youn-Kwan (Department of Biochemistry & Cell Biology, Kyungpook National University) ;
  • Choi, Je-Yong (Department of Biochemistry & Cell Biology, Kyungpook National University)
  • Published : 2009.07.31

Abstract

Orthodontic tooth movement results from the combinational process of both bone resorption and formation in the compressive and tension sides, respectively. However, the genes responsible for new bone formation in tension sides have not been determined. In this study, we used DNA microarray and real-time RT-PCR to identify genes in human periodontal ligament (PDL) cells that undergo significant changes in expression in response to static tensional forces (2 or 12 hours). The genes found were alkaline phospatase (ALP), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), and several collagen genes. Furthermore, an ELISA evaluating the expression of VEGF, type IV collagen and MMP-2 found levels significantly increased after 24 and 72 hours (P < 0.05). ALP activity was also increased after 24 hours (P < 0.05). Collectively, we found the genes up-regulated in our study by the static tensional force are related to osteogenic processes such as matrix synthesis and angiogenesis.

Keywords

References

  1. Klemetti, E. (1996) A review of residual ridge resorption and bone density. J. Prosthet. Dent. 75, 512-514 https://doi.org/10.1016/S0022-3913(96)90455-2
  2. Malmgren, B. and Malmgren, O. (2002) Rate of infraposition of reimplanted ankylosed incisors related to age and growth in children and adolescents. Dent. Traumatol. 18, 28-36 https://doi.org/10.1034/j.1600-9657.2002.180104.x
  3. Percinoto, C., Vieira, A. E., Barbieri, C. M., Melhado, F. L. and Moreira, K. S. (2001) Use of dental implants in children: a literature review. Quintessence Int. 32, 381-383
  4. Davidovitch, Z., Nicolay, O. F., Ngan, P. W. and Shanfeld, J. L. (1988) Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent. Clin. North Am. 32, 411-435
  5. Lee, Y. H., Nahm, D. S., Jung, Y. K., Choi, J. Y., Kim, S. G., Cho, M., Kim, M. H., Chae, C. H. and Kim, S. G. (2007) Differential gene expression of periodontal ligament cells after loading of static compressive force. J. Periodontol. 78, 446-452 https://doi.org/10.1902/jop.2007.060240
  6. de Araujo, R. M., Oba, Y. and Moriyama, K. (2007) Identification of genes related to mechanical stress in human periodontal ligament cells using microarray analysis. J. Periodontal Res. 42, 15-22 https://doi.org/10.1111/j.1600-0765.2006.00906.x
  7. Wescott, D. C., Pinkerton, M. N., Gaffey, B. J., Beggs, K. T., Milne, T. J. and Meikle, M. C. (2007) Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J. Dent. Res. 86, 1212-1216 https://doi.org/10.1177/154405910708601214
  8. Yamaguchi, M., Shimizu, N., Shibata, Y. and Abiko, Y. (1996) Effects of different magnitudes of tension-force on alkaline phosphatase activity in periodontal ligament cells. J. Dent. Res. 75, 889-894 https://doi.org/10.1177/00220345960750030501
  9. Brkovic, B. M., Prasad, H. S., Konandreas, G., Milan, R., Antunovic, D., S$\acute{a}$ndor, G. K. and Rohrer, M. D. (2008) Simple preservation of a maxillary extraction socket using beta-tricalcium phosphate with type I collagen: preliminary clinical and histomorphometric observations. J. Can. Dent. Assoc. 74, 523-528
  10. Gungormus, M. and Kaya, O. (2002) Evaluation of the effect of heterologous type I collagen on healing of bone defects. J. Oral Maxillofac. Surg. 60, 541-545 https://doi.org/10.1053/joms.2002.31852
  11. Anastasi, G., Cordasco, G., Matarese, G., Rizzo, G., Nucera, R., Mazza, M., Militi, A., Portelli, M., Cutroneo, G. and Favaloro, A. (2008) An immunohistochemical, histological, and electron-microscopic study of the human periodontal ligament during orthodontic treatment. Int. J. Mol. Med. 21, 545-554
  12. Kreke, M. R., Sharp, L. A., Lee, Y. W. and Goldstein, A. S. (2008) Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. Part A. 14, 29-37 https://doi.org/10.1089/ten.a.2007.0086
  13. Kanczler, J. M. and Oreffo, R. O. (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell Mater. 15, 100-114
  14. Sipola, A., Nelo, K., Hautala, T., Ilvesaro, J. and Tuukkanen, J. (2006) Endostatin inhibits VEGF-A induced osteoclastic bone resorption in vitro. BMC Musculoskelet. Disord. 7, 56 https://doi.org/10.1186/1471-2474-7-56
  15. Andrae, J., Gallini, R. and Betsholtz, C. (2008) Role of platelet- derived growth factors in physiology and medicine. Genes Dev. 22, 1276-1312 https://doi.org/10.1101/gad.1653708
  16. Kaku, M., Motokawa, M., Tohma, Y., Tsuka, N., Koseki, H., Sunagawa, H., Hernandes, R. A. M., Ohtani, J., Fujita, T., Kawata, T. and Tanne, K. (2008) VEGF and M-CSF levels in periodontal tissue during tooth movement. Biomed. Res. 29, 181-187 https://doi.org/10.2220/biomedres.29.181
  17. Thi, M. M., Iacobas, D. A., Iacobas, S. and Spray, D. C. (2007) Fluid shear stress up-regulates vascular endothelial growth factor gene expression in osteoblasts. Ann. N. Y. Acad. Sci. 1117, 73-81 https://doi.org/10.1196/annals.1402.020
  18. Kohno, S., Kaku, M., Tsutsui, K., Motokawa, M., Ohtani, J., Tenjo, K., Tohma, Y., Tokimasa, C., Fujita, T., Kawata, T. and Tanne, K. (2003) Expression of vascular endothelial growth factor and the effects on bone remodeling during experimental tooth movement. J. Dent. Res. 82, 177- 182 https://doi.org/10.1177/154405910308200306
  19. Wang, Y., Wan, C., Deng, L., Liu, X., Cao, X., Gilbert, S. R., Bouxsein, M. L., Faugere, M. C., Guldberg, R. E., Gerstenfeld, L. C., Haase, V. H., Johnson, R. S., Schipani, E. and Clemens, T. L. (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117, 1616-1626 https://doi.org/10.1172/JCI31581
  20. Brat, D. J., Bellail, A. C. and Van Meir, E. G. The role of interleukin-8 and its receptors in gliomagenesis and tumor angiogenesis. Neuro. Oncol. 7, 122-133 https://doi.org/10.1215/S1152851704001061
  21. Perinetti, G., Paolantonio, M., D'Attilio, M., D'Archivio, D., Tripodi, D., Femminella, B., Festa, F. and Spoto, G. (2002) Alkaline phosphatase activity in gingival crevicular fluid during human orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop. 122, 548-556 https://doi.org/10.1067/mod.2002.126154
  22. Kwan Tat, S., Padrines, M., Th$\acute{e}$oleyre, S., Heymann, D. and Fortun, Y. (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15, 49-60 https://doi.org/10.1016/j.cytogfr.2003.10.005
  23. Tohjima, E., Inoue, D., Yamamoto, N., Kido, S., Ito, Y., Kato, S., Takeuchi, Y., Fukumoto, S. and Matsumoto, T. (2003) Decreased AP-1 activity and interleukin-11 expression by bone marrow stromal cells may be associated with impaired bone formation in aged mice. J. Bone Miner. Res. 18, 1461-1470 https://doi.org/10.1359/jbmr.2003.18.8.1461
  24. Filanti, C., Dickson, G. R., Di Martino, D., Ulivi, V., Sanguineti, C., Romano, P., Palermo, C. and Manduca, P. (2000) The expression of metalloproteinase-2, -9, and -14 and of tissue inhibitors-1 and -2 is developmentally modulated during osteogenesis in vitro, the mature osteoblastic phenotype expressing metalloproteinase-14. J. Bone Miner. Res. 15, 2154-2168 https://doi.org/10.1359/jbmr.2000.15.11.2154
  25. Simsa, S., Genina, O. and Ornan, E. M. (2007) Matrix metalloproteinase expression and localization in turkey (Meleagris gallopavo) during the endochondral ossification process. J. Anim. Sci. 85, 1393-1401 https://doi.org/10.2527/jas.2006-711
  26. Kim, S. G., Kim, M. H., Chae, C. H., Jung, Y. K. and Choi, J. Y. (2008) Downregulation of matrix metalloproteinases in hyperplastic dental follicles results in abnormal tooth eruption. BMB Rep. 41, 322-327 https://doi.org/10.5483/BMBRep.2008.41.4.322
  27. Xu, X., Weinstein, M., Li, C. and Deng, C. (1999) Fibroblast growth factor receptors (FGFRs) and their roles in limb development. Cell Tissue Res. 296, 33-43 https://doi.org/10.1007/s004410051264
  28. Moioli, E. K., Hong, L. and Mao, J. J. (2007) Inhibition of osteogenic differentiation of human mesenchymal stem cells. Wound Repair Regen. 15, 413-421 https://doi.org/10.1111/j.1524-475X.2007.00244.x
  29. Loges, S., Clausen, H., Reichelt, U., Bubenheim, M., Erbersdobler, A., Schurr, P., Yekebas, E., Schuch, G., Izbicki, J., Pantel, K., Bokemeyer, C. and Fiedler, W. (2007) Determination of microvessel density by quantitative real-time PCR in esophageal cancer: correlation with histologic methods, angiogenic growth factor expression, and lymph node metastasis. Clin. Cancer Res. 13, 76-80 https://doi.org/10.1158/1078-0432.CCR-06-1324

Cited by

  1. Response of immortalized murine cementoblast cells to hypoxia in vitro vol.58, pp.11, 2013, https://doi.org/10.1016/j.archoralbio.2013.08.001
  2. A Case of Refractory Perforation at the Floor of the Mouth with Ectopic Bone Formation vol.29, pp.3, 2011, https://doi.org/10.1179/crn.2011.033
  3. Engineering three-dimensional constructs of the periodontal ligament in hyaluronan-gelatin hydrogel films and a mechanically active environment 2013, https://doi.org/10.1111/jre.12072
  4. The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia vol.58, pp.10, 2013, https://doi.org/10.1016/j.archoralbio.2013.03.011
  5. Mechano-regulation of collagen biosynthesis in periodontal ligament vol.58, pp.4, 2014, https://doi.org/10.1016/j.jpor.2014.08.003
  6. Hydrogen sulfide promotes osteogenic differentiation of human periodontal ligament cells via p38-MAPK signaling pathway under proper tension stimulation vol.72, 2016, https://doi.org/10.1016/j.archoralbio.2016.08.008
  7. Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells vol.51, pp.8, 2015, https://doi.org/10.1007/s11626-015-9892-0
  8. The Roles of Angiotensin II in Stretched Periodontal Ligament Cells vol.90, pp.2, 2011, https://doi.org/10.1177/0022034510382118
  9. Expression of collagen I, collagen III and MMP-1 on the tension side of distracted tooth using periodontal ligament distraction osteogenesis in beagle dogs vol.59, pp.11, 2014, https://doi.org/10.1016/j.archoralbio.2014.07.011
  10. Involvement of COX-2/PGE2 signalling in hypoxia-induced angiogenic response in endothelial cells vol.16, pp.8, 2012, https://doi.org/10.1111/j.1582-4934.2011.01479.x
  11. Silver nanoparticles induce apoptosis through the Toll-like receptor 2 pathway vol.113, pp.6, 2012, https://doi.org/10.1016/j.oooo.2012.01.019