DOI QR코드

DOI QR Code

Proteome analysis of the m. longissimus dorsi between fattening stages in Hanwoo steer

  • Kim, Nam-Kuk (National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Seung-Hwan (National Institute of Animal Science, Rural Development Administration) ;
  • Cho, Yong-Min (National Institute of Animal Science, Rural Development Administration) ;
  • Son, Eun-Suk (Department of Applied Biochemistry, College of Biomedical & Health Science, Konkuk University) ;
  • Kim, Kyung-Yun (Department of Applied Biochemistry, College of Biomedical & Health Science, Konkuk University) ;
  • Lee, Chang-Soo (Department of Applied Biochemistry, College of Biomedical & Health Science, Konkuk University) ;
  • Yoon, Du-Hak (National Institute of Animal Science, Rural Development Administration) ;
  • Im, Seok-Ki (National Institute of Animal Science, Rural Development Administration) ;
  • Oh, Sung-Jong (National Institute of Animal Science, Rural Development Administration) ;
  • Park, Eung-Woo (National Institute of Animal Science, Rural Development Administration)
  • Published : 2009.07.31

Abstract

The objective of this study was to identify proteins in the m. longissimus dorsi between early (12 months of age) and late (27 months of age) fattening stages of Hanwoo (Korean cattle) steers. Using two-dimensional electrophoresis and mass spectrometry, 8 proteins of 11 differentially expressed spots between the 12 and 27 month age groups were identified in the loin muscle. Among those that were differentially expressed, zinc finger 323 and myosin light chain were highly expressed in late-fattening stage, and two catabolic enzymes, triosephosphate isomerase (TPI) and succinate dehydrogenase (SDH) were expressed more in the early versus the late-fattening stage. In particular, the quantification of TPI and SDH by immunoblotting correlated well with fat content. Our data suggested that TPI and SDH are potential candidates as markers and their identification provides new insight into the molecular mechanisms and pathways associated with intramuscular fat contents of bovine skeletal muscle.

Keywords

References

  1. Geay, Y., Bauchart, D., Hocquette, J. F. and Culioli, J. (2001) Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat. Reprod. Nutr. Dev. 41, 1-26 https://doi.org/10.1051/rnd:2001108
  2. Maltin, C., Balcerzak, D., Tilley, R. and Delday, M. (2003) Determinants of meat quality: tenderness. Pro. Nutr. Soc. 62, 337-347 https://doi.org/10.1079/PNS2003248
  3. Pethick, D. W., D'Souza, D. N., Dunshea, F. R and Harper, G. S. (2005) Fat metabolism and regional distribution in ruminants and pigs-influences of genetics and nutrition. Rec. Adv. Anim. Nutr. Aust. 15, 39-45
  4. Gondret, F., Hocquette, J. F. and Herpin, P. (2004) Age-related relationships between muscle fat content and metabolic traits in growing rabbits. Reprod. Nutr. Dev. 44, 1-16 https://doi.org/10.1051/rnd:2004011
  5. Gardner, D. S., Tingey, K., Van Bon, B. W. M., Ozanne, S. E., Wilson, V., Dandrea, J., Keisler, D. H., Tephenson, T. and Symonds, M. E. (2005) Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R947-954 https://doi.org/10.1152/ajpregu.00120.2005
  6. Hocquette, J. F, Jurie, C., Ueda, Y., Boulesteix, P., Bauchart, D. and Pethick, D. W. (2003) The relationship between muscle metabolic pathways and marbling of beef. Progress in Research on Energy and Protein Metabolism. pp. 513-516, Wageningen, Netherlands
  7. Hong, S. K. (1998) Annual report for Hanwoo research, RDA, Korea
  8. Nishimura, T., Hattori, A. and Takahashi, K. (1999) Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. J. Anim. Sci. 77, 93-104
  9. Albery, W. J. and Knowles, J. R. (1976) Free-energy profile for the reaction catalyzed by triosephosphate isomerase. Biochem. 15, 5627-5631 https://doi.org/10.1021/bi00670a031
  10. Kalhan, S. C., Mahajan, S., Burkett, E., Reshef, L. and Hanson, R. W. (2001) Glyceroneogenesis and the source of glycerol for hepatic triacylglycerol synthesis in human. J. Biol. Chem. 276, 12928-12931 https://doi.org/10.1074/jbc.M006186200
  11. Scheffler, I. E. (1998) Molecular genetics of succinate:quinine oxidoreductase in eukaryotes. Prog. Nucleic. Acid Res. Mol. Biol. 60, 267-315 https://doi.org/10.1016/S0079-6603(08)60895-8
  12. Lawrie, R. A. (1985) Meat science, 4th ed., Pergamon Press, New York, USA
  13. Lee, H. J., Lee, S. C., Kim, D. W., Park, J. G. and Han, I. K. (2000) Cellularity of adipose tissue obtained from different sex and growth stages of Hanwoo cattle and sheep. Asian-Aus. J. Anim. Sci. 13, 155-160
  14. Pethick, D. W., Harper, G. S. and Oddy, V. H. (2004) Growth, development and nutritional manipulation of marbling in cattle. Aust. J. Exp. Agric. 44, 705-715 https://doi.org/10.1071/EA02165
  15. Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M. and Mortensen, R. M. (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611-617 https://doi.org/10.1016/S1097-2765(00)80211-7
  16. Lee, G. W., Yoon, H. C. and Byun, S. Y. (2004) Inhibitory effect of Eucommia ulmoides Oliver on adipogenic differentiation through proteome analysis. Enz. Micro. Tech. 35, 632-638 https://doi.org/10.1016/j.enzmictec.2004.08.037
  17. Tan, S. H., Roverter, A., Wang, Y., Byrne, K. A., Mc- William, S. M. and Lehnert S. A. (2006) Gene expression profiling of bovine in vitro adipogenesis using a cDNA microarray. Funct Integr. Genomics. 6, 235-249 https://doi.org/10.1007/s10142-005-0016-x
  18. Singh, J. Verma, N. K., Kansagra, S. M., Kate, B. N. and Dey, C. S. (2007) Altered PPARγ expression inhibits myogenic differentiation in C2C12 skeletal muscle cells. Mol. Cell. Biochem. 294, 163-171 https://doi.org/10.1007/s11010-006-9256-x
  19. Klug, A. and Schwabe, J. W. R. (1995) Zinc fingers. FASEB. J. 9, 597-604
  20. Pi, H., Li, Y., Zhu, C., Zhou, L., Luo, K., Yuan, W., Yi, Z., Wang, Y., Wu, X. and Liu, M. (2002) A novel human SCAN/(Cys)2(His)2 zinc-finger transcription factor ZNF 323 in early human embryonic development. Biochem. Biophys. Res. Commun. 296, 206-213 https://doi.org/10.1016/S0006-291X(02)00772-6
  21. Castillo, G., Brun, R. P., Rosenfield, J. K., Hauser, S., Park, C. W., Troy, A. E., Wright, M. E. and Spiegelman, B. M. (1999) An adopogenic cofactor bound by the differentiation domain PPAR$\gamma$. EMBO J. 18, 3676-3687 https://doi.org/10.1093/emboj/18.13.3676
  22. Banerjee, S. S., Feinberg, M. W., Watanabe, M., Gray, S., Haspel, R. L., Denkinger, D. J., Kawahara, R. and Hauner, H. (2003) The Kruppel-like factor KLF2 inhibits peroxisome proliferators-activated receptor-$\gamma$ expression and adipogenesis. J. Biol. Chem. 278, 2581-2584 https://doi.org/10.1074/jbc.M210859200
  23. Sekiya, I., Larson, B. L., Vuoristo, J. T., Cui, J. G. and Prockop, D. J. (2004) Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J. Bone Min. Res. 19, 256-264 https://doi.org/10.1359/JBMR.0301220
  24. Folch, J., Lees, M., and Stanley, G. H. S. (1957) A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-508
  25. Mortz, E., Krogh, T. N., Vorum, H. and Gorg, A. (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ ionization-time of flight analysis. Proteomics 1, 1359-1363 https://doi.org/10.1002/1615-9861(200111)1:11<1359::AID-PROT1359>3.0.CO;2-Q
  26. Cody, R. P. and Smith J. K. (1997) Applied statistical and the SAS programming language. 4th ed., Prentice Hall, Inc., New Jersey, USA
  27. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0

Cited by

  1. Proteomics of skeletal muscle glycolysis vol.1804, pp.11, 2010, https://doi.org/10.1016/j.bbapap.2010.08.001
  2. Dietary L-Arginine Supplementation Affects the Skeletal Longissimus Muscle Proteome in Finishing Pigs vol.10, pp.1, 2015, https://doi.org/10.1371/journal.pone.0117294
  3. “Muscle to meat” molecular events and technological transformations: The proteomics insight vol.75, pp.14, 2012, https://doi.org/10.1016/j.jprot.2012.04.011
  4. Proteomic Analysis of Bovine Longissimus Muscle Satellite Cells during Adipogenic Differentiation vol.24, pp.5, 2011, https://doi.org/10.5713/ajas.2011.10345
  5. Proteomic Analysis of Bovine Muscle Satellite Cells during Myogenic Differentiation vol.24, pp.9, 2011, https://doi.org/10.5713/ajas.2011.10344
  6. Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective vol.88, 2013, https://doi.org/10.1016/j.jprot.2013.01.029
  7. The sheep ( Ovis aries ) muscle proteome: Decoding the mechanisms of tolerance to Seasonal Weight Loss using label-free proteomics vol.161, 2017, https://doi.org/10.1016/j.jprot.2017.03.020
  8. Proteomic and peptidomic differences and similarities between four muscle types from New Zealand raised Angus steers vol.121, 2016, https://doi.org/10.1016/j.meatsci.2016.05.014
  9. Proteomics of skeletal muscle differentiation, neuromuscular disorders and fiber aging vol.7, pp.2, 2010, https://doi.org/10.1586/epr.10.2
  10. Identification of differentially expressed genes between high and low marbling score grades of the longissimus lumborum muscle in Hanwoo (Korean cattle) vol.121, 2016, https://doi.org/10.1016/j.meatsci.2016.05.018
  11. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis vol.4, pp.3, 2016, https://doi.org/10.3390/proteomes4030027
  12. The longissimus thoracis muscle proteome in Alentejana bulls as affected by growth path vol.152, 2017, https://doi.org/10.1016/j.jprot.2016.10.020
  13. Association of Succinate Dehydrogenase and Triose Phosphate Isomerase Gene Expression with Intramuscular Fat Content in Loin Muscle of Korean (Hanwoo) Cattle vol.22, pp.1, 2012, https://doi.org/10.5352/JLS.2012.22.1.31
  14. Meat science: From proteomics to integrated omics towards system biology vol.78, 2013, https://doi.org/10.1016/j.jprot.2012.10.023
  15. The Effect of Weight Loss on the Muscle Proteome in the Damara, Dorper and Australian Merino Ovine Breeds vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0146367
  16. Integrated data mining of transcriptomic and proteomic datasets to predict the secretome of adipose tissue and muscle in ruminants vol.12, pp.9, 2016, https://doi.org/10.1039/C6MB00224B