DOI QR코드

DOI QR Code

Transcriptional activation of an anti-oxidant mouse Pon2 gene by dexamethasone

  • Published : 2009.07.31

Abstract

Glucocorticoids regulate multiple physiological processes such as metabolic homeostasis and immune response. Mouse Pon2 (mPon2) acts as an antioxidant to reduce cellular oxidative stress in cells. In this present study, we investigated the transcriptional regulation of mPon2 by glucocorticoids. In the presence of glucocorticoid analogue dexamethasone, the expression of mPon2 mRNA in cells was increased, whereas the expression was inhibited by a transcription inhibitor actinomycin D. Glucocorticoid receptors bound to the putative glucocorticoid response elements located between -593 bp and -575 bp of the mPon2 promoter. Transcriptional activity was completely blocked when the putative element was mutated. Taken together, these results suggest that the expression of the mPon2 gene is directly regulated by glucocorticoid-glucocorticoid receptor complexes.

Keywords

References

  1. Adcock, I. M. (2000) Molecular mechanisms of glucocorticosteroid actions. Pulm. Pharmacol. Ther. 13, 115-126 https://doi.org/10.1006/pupt.2000.0243
  2. Sapolsky, R. M., Romero, L. M. and Munck, A. U. (2000) How do glucocorticoids influence stress response? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews 21, 55-89 https://doi.org/10.1210/er.21.1.55
  3. Schoneveld, O. J. L. M., Gaemers, I. C. and Lamers, W. H. (2004) Mechanism of glucocorticoid signaling. Biochim. Biophys. Acta 1680, 114-128 https://doi.org/10.1016/j.bbaexp.2004.09.004
  4. Cole, T. J. (2006) Glucocorticoid action and the development of selective glucocorticoid receptor ligands. Biotechnol. Annu. Rev. 12, 269-300 https://doi.org/10.1016/S1387-2656(06)12008-6
  5. Karin, M. (1998) New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable? Cell 93, 487-490 https://doi.org/10.1016/S0092-8674(00)81177-0
  6. Wikstrom, A-C. (2003) Glucocorticoid action and novel mechanisms of steroid resistance: role of glucocorticoid receptor-interacting proteins for glucocorticoid responsiveness. J. Endoc. 178, 331-337 https://doi.org/10.1677/joe.0.1780331
  7. Adcock, I. M., Ito, K. and Barnes, P. J. (2004) Glucocorticoids: effect on gene transcription. Proc. Am. Thorac. Soc. 1, 247-254 https://doi.org/10.1513/pats.200402-001MS
  8. Kurihara, I., Shibata, H., Suzuki, T., Ando, T., Kobayashi, S., Hayashi, M., Saito, I. and Saruta, T. (2002) Expression and regulation of nuclear receptor coactivators in glucocorticoid action. Mol. Cell Endocrinol. 189, 181-189 https://doi.org/10.1016/S0303-7207(01)00717-1
  9. Heitzer, M. D., Wolf, I. M., Sanchez, E. R., Witchel, S. F. and DeFranco, D. B. (2007) Glucocorticoid receptor physiology. Rev. Endocr. Metab. Disord. 8, 321-330 https://doi.org/10.1007/s11154-007-9059-8
  10. Robyr, D., Wolffe, A. P. and Wahli, W. (2000) Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol. Endocrinol. 14, 329-347 https://doi.org/10.1210/me.14.3.329
  11. Acevedo, M. L. and Kraus, W. L. (2004) Transcriptional activiation by nuclear receptors. Essays Biochem. 40, 73-88
  12. Pereira, B., Rosa, L., Safi, D. A., Bechara, E. J. H. and Curi, R. (1995) Hormonal regulation of superoxide dismutase, catalase, and glutathione peroxidase activities in rat macrophases. Biochem. Pharmacol. 50, 2093-2098 https://doi.org/10.1016/0006-2952(95)02116-7
  13. Jose, H. J., Berenice, S-G.A. and Cecilia, V-R. (1997) Induction of antioxidant enzymes by dexamethasone in the adult rat lung. Life Sci. 60, 2059-2067 https://doi.org/10.1016/S0024-3205(97)00193-8
  14. Melgert, B. N., Olinga, P., Laan, J., Weert, B., Cho, J., Schuppan, D., Groothuis, G., Meijer, D., and Poelstra, K. (2001) Targeting dexamethasone to kupffer cells: effects on liver inflammation and fibrosis in rats. Hepatology 34, 719-728 https://doi.org/10.1053/jhep.2001.27805
  15. Ruiz, L. M., Bedoya, G., Sarazar, J., Garcia, O. D. and Patino, P. J. (2002) Dexamethasone inhibits apoptosis of human neutrophils induced by reactive oxygen species. Inflammation 26, 251-262
  16. Rosenblat, M., Draganov, D., Watson, C. E., Bisgaier, C. L., Du, B. N. and Aviram, M. (2003) Mouse macrophage paraoxonase 2 activity is increased whereas cellular paraoxonase 3 activity is decreased under oxidative stress. Arterioscler. Thromb. Vasc. Biol. 23, 468-474 https://doi.org/10.1161/01.ATV.0000059385.95664.4D
  17. Ng, C. J., Shih, D. M., Hama, S. Y., Villa, N., Navab, M. and Reddy, S. T. (2005) The paraoxonase gene family and atherosclerosis. Free Radic. Biol. Med. 38, 153-163 https://doi.org/10.1016/j.freeradbiomed.2004.09.035
  18. Deakin, S. P. and James, R. W. (2008) Transcriptional regulation of the Paraoxonase genes; in The paraoxonases: their role in disease development and xenobiotic metabolism, Mackness, B., Mackness, M., Aviram, M., Paragh, G., (eds.) pp. 241-250, Springer, Berlin
  19. Ng, C. J., Wadleigh, D. J., Gangopadhyay, A., Hama, S., Grijalva, V. R., Navab, M., Fogelman, A. M. and Reddy, S.T. (2001) Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J. Biol. Chem. 30, 44444-44449
  20. Rosenblat, M., Hayek, T., Hussein, K. and Aviram, M. (2004) Decreased macrophage Paraoxonase 2 expression in patients with hypercholesterolemia is the result of their increased cellular cholesterol content: effect of atorvastatin therapy. Arterioscler. Thromb. Vasc. Biol. 24, 175-180 https://doi.org/10.1161/01.ATV.0000104011.88939.06
  21. Horke, S., Witte, I., Wilgenbus, P., Krüger, M., Strand, D. and Förstermann, U. (2007) Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation 115, 2055-2064 https://doi.org/10.1161/CIRCULATIONAHA.106.681700
  22. Trousson, A., Grenier, J., Fonte, C., Massaad-Massade, L., Schumacher, M. and Massaad, C. (2007) Recruitment of the p160 coactivators by the glucocorticoid receptor: dependence on the promoter context and cell type but not hypoxic conditions. J. Steroid. Biochem. Mol. Biol. 104, 305-311 https://doi.org/10.1016/j.jsbmb.2007.03.018
  23. Fang, H. L., Shenoy, S., Duanmu, Z., Kocarek, T. A. and Morris, M. R. (2003) Transactivation of glucocorticoid-inducible rat aryl sulfotransferase (SULT1A1) gene transcription. Drug. Metab. Disp. 31, 1378-1381 https://doi.org/10.1124/dmd.31.11.1378
  24. Bian, H. S., Ngo, S. Y. Y., Tan, W., Wong, C. H., Boelsterli, U. A. and Tan, T. M. C. (2007) Induction of human sulfotransferase 1A3 (SULT1A3) by glucocorticoids. Life Sci. 81, 1695-1667
  25. Amat, R., Solanes, G., Giralt, M. and Villarroya, F. (2007) SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription. J. Biol. Chem. 282, 34066-34076 https://doi.org/10.1074/jbc.M707114200
  26. Aviram, M. and Rosenblat, M. (2004) Paraoxonase 1, 2 and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic. Biol. Med. 37, 1304-1316 https://doi.org/10.1016/j.freeradbiomed.2004.06.030
  27. Aviram, M. and Rosenblat, M. (2005) Paraoxonases and cardiovascular diseases: pharmacological and nutritional influences. Curr. Opin. Lipidol. 16, 393-399 https://doi.org/10.1097/01.mol.0000174398.84185.0f
  28. Shiner, M., Fuhrman, B. and Aviram, M. (2004) Paraoxonase 2 (Pon2) expression is upregulated via a reduced-nicotinamide- adenine-dinucleotide-phosphate (NADPH)-oxidasedependent mechanism during monocytes differentiation into macrophages. Free Radic. Biol. Med. 37, 2052-2063
  29. Shiner, M., Fuhrman, B. and Aviram, M. (2007) Macrophage paraoxonase 2 (PON2) expression is up-regulated by pomegranate juice phenolic anti-oxidants via PPARγ and AP-1 pathway activation. Atherosclerosis 195, 313-321 https://doi.org/10.1016/j.atherosclerosis.2007.01.007
  30. Kassel, O. and Herrlich, P. (2007) Crosstalk between the glucocorticoid receptor and other transcription factors: Molecular aspects. Mol. Cell Endocrinology 275, 12-29
  31. Adcock, I. M., Cosio, B., Tsaprouni, L., Barnes, P. J. and Ito, K. (2005) Redox regulation of histone deacetylases and glucocorticoid-mediated inhibition of the inflammatory response. Antioxid. Redox Signal. 7, 144-153 https://doi.org/10.1089/ars.2005.7.144

Cited by

  1. The three-gene paraoxonase family: Physiologic roles, actions and regulation vol.214, pp.1, 2011, https://doi.org/10.1016/j.atherosclerosis.2010.08.076
  2. Paraoxonases-1, -2 and -3: What are their functions? vol.259, 2016, https://doi.org/10.1016/j.cbi.2016.05.036
  3. Adaptive response of rat pancreatic β-cells to insulin resistance induced by monocrotophos: Biochemical evidence vol.134, 2016, https://doi.org/10.1016/j.pestbp.2016.04.009
  4. Effect of Quercetin on Paraoxonase 2 Levels in RAW264.7 Macrophages and in Human Monocytes—Role of Quercetin Metabolism vol.10, pp.9, 2009, https://doi.org/10.3390/ijms10094168
  5. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection vol.43, 2014, https://doi.org/10.1016/j.neuro.2013.08.011
  6. Paraoxonases function as unique protectors against cardiovascular diseases and diabetes: Updated experimental and clinical data vol.239, pp.8, 2014, https://doi.org/10.1177/1535370214535897
  7. Effect of short-term, high-dose methylprednisolone on oxidative stress in children with acute immune thrombocytopenia vol.51, pp.4, 2016, https://doi.org/10.5045/br.2016.51.4.261
  8. Effect of certain non-steroidal anti-inflammatory drugs on the paraoxonase 2 (PON2) in human monocytic cell line U937 vol.124, pp.4, 2018, https://doi.org/10.1080/13813455.2017.1411371