DOI QR코드

DOI QR Code

The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation

  • Ronnau, Cindy (Department of Internal Medicine B, University of Greifswald) ;
  • Liebermann, Herbert E. H. (Varicula Life Science AG) ;
  • Helbig, Franz (Varicula Life Science AG) ;
  • Staudt, Alexander (Department of Internal Medicine B, University of Greifswald) ;
  • Felix, Stephan B. (Department of Internal Medicine B, University of Greifswald) ;
  • Ewert, Ralf (Department of Internal Medicine B, University of Greifswald) ;
  • Landsberger, Martin (Department of Internal Medicine B, University of Greifswald)
  • Published : 2009.02.28

Abstract

The bio-complex "reaction pattern in vertebrate cells"(RiV) is mainly represented by characteristic exosome-like particles - probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5${\pm}$10.3%) and VCAM-1 (71.1${\pm}$12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0${\pm}$5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7${\pm}$4.1%) and p65 (85.0${\pm}$1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

Keywords

References

  1. Blankenberg, S., Barbaux, S. and Tiret, L. (2003) Adhesion molecules and atherosclerosis. Atherosclerosis 170, 191-203 https://doi.org/10.1016/S0021-9150(03)00097-2
  2. Park, L. J., Ju, S. M., Song, H. Y., Lee, J. A., Yang, M. Y., Kang, Y. H., Kwon, H. J., Kim, T. Y., Choi, S. Y. and Park, J. (2006) The enhanced monocyte adhesiveness after UVB exposure requires ROS and NF-kappaB signaling in human keratinocyte. J. Biochem. Mol. Biol. 39, 618-625 https://doi.org/10.5483/BMBRep.2006.39.5.618
  3. Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A. and Springer, T. A. (1986) Induction by IL 1 and interferon- gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 137, 245-254
  4. Collins, T., Read, M. A., Neish, A. S., Whitley, M. Z., Thanos, D. and Maniatis, T. (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappaB and cytokine-inducible enhancers. Faseb. J. 9, 899-909 https://doi.org/10.1096/fasebj.9.10.7542214
  5. Baeuerle, P. A. and Henkel, T. (1994) Function and activation of NF-kappaB in the immune system. Annu. Rev. Immunol. 12, 141-179 https://doi.org/10.1146/annurev.iy.12.040194.001041
  6. Rhee, J. W., Lee, K. W., Kim, D., Lee, Y., Jeon, O. H., Kwon, H. J. and Kim, D. S. (2007) NF-kappaB-dependent regulation of matrix metalloproteinase-9 gene expression by lipopolysaccharide in a macrophage cell line RAW 264.7. J. Biochem. Mol. Biol. 40, 88-94 https://doi.org/10.5483/BMBRep.2007.40.1.088
  7. Liebermann, H. E. H., Sietmann, R., Bange, R., Wazel, W. and Riebe, R. (2005) RiV particles are heat stable. Eng. Life Sci. 5, 240-246 https://doi.org/10.1002/elsc.200420070
  8. Solisch, P., Nockler, A., Schafer, D., Riebe, R., Holl, U., Schirrmeier, H., Kretzschmar, C., Wazel, W., Dietz, G. and Sulk, J. (1986) [A hitherto unknown reaction pattern in vertebrate cells (RiV). 2. The protective effect of RiV particle preparations against foot-and-mouth disease in guinea pigs]. Zentralbl. Allg. Pathol. 131, 563-568
  9. Solisch, P., Wazel, W., Steinmann, W., Riebe, R. and Meyer, U. (1987) [A hitherto unrecognized pattern of reactions in vertebrate cells (RiV). 3. Experimental therapy with the help of RiV particle preparations in mice with mammary carcinomas]. Zentralbl. Allg. Pathol. 133, 293-298
  10. Solisch, P., Kalies, K.-U. and Bergmann, S. (1999) BK-RiV preparations for treatment of proliferative cellular disorders. Patent. EP 0 889 053 A2
  11. Braun, M., Pietsch, P., Schror, K., Baumann, G. and Felix, S. B. (1999) Cellular adhesion molecules on vascular smooth muscle cells. Cardiovasc. Res. 41, 395-401 https://doi.org/10.1016/S0008-6363(98)00302-2
  12. Flower, R. J. and Rothwell, N. J. (1994) Lipocortin-1: cellular mechanisms and clinical relevance. Trends. Pharmacol. Sci. 15, 71-76 https://doi.org/10.1016/0165-6147(94)90281-X
  13. Tak, P. P. and Firestein, G. S. (2001) NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7-11 https://doi.org/10.1172/JCI11830
  14. De Cesaris, P., Starace, D., Riccioli, A., Padula, F., Filippini, A. and Ziparo, E. (1998) Tumor necrosis factor-alpha induces interleukin-6 production and integrin ligand expression by distinct transduction pathways. J. Biol. Chem. 273, 7566-7571 https://doi.org/10.1074/jbc.273.13.7566
  15. Rothlein, R., Mainolfi, E. A., Czajkowski, M. and Marlin, S. D. (1991) A form of circulating ICAM-1 in human serum. J. Immunol. 147, 3788-3793
  16. Tsakadze, N. L., Sen, U., Zhao, Z., Sithu, S. D., English, W. R. and D'Souza, S. E. (2004) Signals mediating cleavage of intercellular adhesion molecule-1. Am. J. Physiol. Cell Physiol. 287, C55-63 https://doi.org/10.1152/ajpcell.00585.2003
  17. Fiore, E., Fusco, C., Romero, P. and Stamenkovic, I. (2002) Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 21, 5213-5223 https://doi.org/10.1038/sj.onc.1205684
  18. Look, D. C., Pelletier, M. R., Tidwell, R. M., Roswit, W. T. and Holtzman, M. J. (1995) Stat1 depends on transcriptional synergy with Sp1. J. Biol. Chem. 270, 30264-30267 https://doi.org/10.1074/jbc.270.51.30264
  19. Berendji-Grun, D., Kolb-Bachofen, V. and Kroncke, K. D. (2001) Nitric oxide inhibits endothelial IL-1[beta]-induced ICAM-1 gene expression at the transcriptional level decreasing Sp1 and AP-1 activity. Mol. Med. 7, 748-754
  20. Gross, C., Hansch, D., Gastpar, R. and Multhoff, G. (2003) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol. Chem. 384, 267-279 https://doi.org/10.1515/BC.2003.030
  21. Kohn, G., Wong, H. R., Bshesh, K., Zhao, B., Vasi, N.,Denenberg, A., Morris, C., Stark, J. and Shanley, T. P. (2002) Heat shock inhibits TNF-induced ICAM-1 expression in human endothelial cells via I kappa kinase inhibition. Shock 17, 91-97 https://doi.org/10.1097/00024382-200202000-00002
  22. Liebermann, H. E. H. and Muller, H. (2008) Reaction pattern in vertebrate cells (RiV): Studies of the course of tumor therapy using an anti RiV ELISA-initial results. Eng. Life Sci. 8, 148-156 https://doi.org/10.1002/elsc.200720234
  23. Jantzen, F., Konemann, S., Wolff, B., Barth, S., Staudt, A., Kroemer, H. K., Dahm, J. B., Felix, S. B. and Landsberger, M. (2007) Isoprenoid depletion by statins antagonizes cytokine- induced down-regulation of endothelial nitric oxide expression and increases NO synthase activity in human umbilical vein endothelial cells. J. Physiol. Pharmacol. 58, 503-514
  24. Landsberger, M., Wolff, B., Jantzen, F., Rosenstengel, C.,Vogelgesang, D., Staudt, A., Dahm, J. B. and Felix, S. B. (2007) Cerivastatin reduces cytokine-induced surface expression of ICAM-1 via increased shedding in human endothelial cells. Atherosclerosis 190, 43-52 https://doi.org/10.1016/j.atherosclerosis.2006.02.009

Cited by

  1. Cell-Derived Nanoparticles are Endogenous Modulators of Sepsis With Therapeutic Potential vol.48, pp.3, 2017, https://doi.org/10.1097/SHK.0000000000000855
  2. Nanoparticles prepared from porcine cells support the healing of cutaneous inflammation in mice and wound re-epithelialization in human skin vol.26, pp.12, 2017, https://doi.org/10.1111/exd.13450