References
-
Mitsui, T., Ueki. Y. and Igaue, I. (1993) Biosynthesis and secretion of
$\alpha$ -amylase by rice suspension- cultured cells: Purification and characterization of$\alpha$ -amylase isozyme H. Plant Physiol. Biochem. 31, 863-874 - Lloyd, J. R, Kossmann, J. and Ritte, G. (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci. 10, 130-137 https://doi.org/10.1016/j.tplants.2005.01.001
- Nakai, K. and Kanehisa, M. (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897-911 https://doi.org/10.1016/S0888-7543(05)80111-9
- Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005-1016 https://doi.org/10.1006/jmbi.2000.3903
- Doyle, E. A., Lane, A. M., Sides, J. M., Mudgett, M, B. and Monroe, J. D. (2007) An a-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress. Plant Cell Environ. 30, 388-398 https://doi.org/10.1111/j.1365-3040.2006.01624.x
- Stanley, D., Fitzgerald, A. M., Farnden, K. J. F. and MacRae, E. A. (2002) Characterisation of putative a-amylases from apple (Malus domestica) and Arabidopsis thaliana. Biologia. Bratislava. 11, 137-148
- Beers. E. P., Duke, S. H. (1988) Localization of a-amylase in the apoplast of pea (Pisum sativum L.) stems. Plant Physiol. 87, 799-802 https://doi.org/10.1104/pp.87.4.799
- Commuri, P. D. and Duke, S. H. (1997) Apoplastic a-amylase in pea is enhanced by heat stress. Plant Cell Physiol. 38, 625-630 https://doi.org/10.1093/oxfordjournals.pcp.a029213
- Saeed, M. and Duke, S. H. (1990) Amylases in pea tissue with reduced chloroplast density and/or function. Plant Physiol. 94, 1813-1819 https://doi.org/10.1104/pp.94.4.1813
- Saeed, M. and Duke, S. H. (1988) Chloroplastic regulation of apoplastic a-amylase activity in pea seedlings. Plant Physiol. 93, 131-140 https://doi.org/10.1104/pp.93.1.131
- Preiss, J. (1988). Biosynthesis of starch and its regulation. In The Biochemistry of Plants, Vol. 14, J. Preiss, ed (San Diego, CA: Academic Press), pp. 181-254
- Martin, C. and Smith, A. M. (1995). Starch biosynthesis. Plant Cell 7, 971-985 https://doi.org/10.1105/tpc.7.7.971
- Smith, A. M., Denyer, K., and Martin, C. (1997) The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 67-87 https://doi.org/10.1146/annurev.arplant.48.1.67
- Lin, T. P., Caspar, T., Somerville, C. R. and Preiss, J. (1998) A starch deficient mutant of Arabidopsis thaliana with low ADP glucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol. 88, 1175-1181 https://doi.org/10.1104/pp.88.4.1175
- Sokolov, L. N., Dejardin, A., Kleczkowski, L. A. (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem. J. 336, 681-687 https://doi.org/10.1042/bj3360681
- Wang, S. M., Chu, B., Lue, W. L., Yu, T. S., Eimert, K. and Chen, J. (1997) adg2-1 represents a missense mutation in the ADPG pyrophosphorylase large subunit gene of Arabidopsis thalian. Plant J. 11, 1121-1126 https://doi.org/10.1046/j.1365-313X.1997.11051121.x
- Yu, T. S., Zeeman, S. C., Thorneycroft, D., Fulton, D. C., Dunstan, H., Lue, W. L., Hegemann, B., Tung, S. Y., Umemoto, T., Chapple, A., Tsai, D. L., Wang, S. M., Smith, A. M., Chen, J. C. and Smith, S. M. (2005) a-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J. Biol. Chem. 280, 9773-9779 https://doi.org/10.1074/jbc.M413638200
- Delatte. T., Umhang, M., Trevisan, M., Eicke, S., Thorneycroft, D., Smith, S. M. and Zeeman, S. C. (2006) Evidence for distinct mechanisms of starch granule breakdown in plants. J. Biol. Chem. 281, 12050-12059 https://doi.org/10.1074/jbc.M513661200
- H. G. (1998) Differential expression of senescence- associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol. Biol. 37, 445-454 https://doi.org/10.1023/A:1005958300951
- Quirino, B. F., Normanly, J. and Amasino, R. M. (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol. Biol. 40, 267-278 https://doi.org/10.1023/A:1006199932265
- Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T. and Pink, D. (2003) The molecular analyses of leaf senescence-a genomics approach. Plant Biotechnol. J. 1, 3-22 https://doi.org/10.1046/j.1467-7652.2003.00004.x
- Lim. P. O., Woo, H. R. and Nam, H. G. (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8: 272-278 https://doi.org/10.1016/S1360-1385(03)00103-1
- Weaver, L. M., Gan, S., Quirino, B. and Amasino, R. M. (1998) A comparison of the expression patterns of several senescence associated genes in response to stress and hormone treatment. Plant Mol. Biol. 37, 455-469 https://doi.org/10.1023/A:1005934428906
- Mockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y. C., Dolan, S. and Lin, C. (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. USA 100, 2140-2145 https://doi.org/10.1073/pnas.0437826100
- Pulla, R. K., Kim, Y. J., Kim, M. K., Senthil, K. S., In, J. G. and Yang, D. C. (2008) Isolation of a novel dehydrin gene from Codonopsis lanceolata and analyses of its response to abiotic stresses. BMB Rep. 41, 338-343 https://doi.org/10.5483/BMBRep.2008.41.4.338
- Gao, S., Lin, J., Liu, X., Deng, Z., Li, Y., Sun, X. and Tang, K. (2006) Molecular Cloning, Characterization and Functional Analyses of a 2C-methyl-D-erythritol 2, 4-cyclodiphosphate Synthase Gene from Ginkgo biloba. J. Biochem. Mol. Biol. 39, 502-510 https://doi.org/10.5483/BMBRep.2006.39.5.502
Cited by
- Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence vol.218, pp.4, 2018, https://doi.org/10.1111/nph.15127