• Title/Summary/Keyword: VCAM-1

Search Result 137, Processing Time 0.024 seconds

The Clinical Significance of Soluble Intercellular Adhesion Molecule-1 sICAM-1) and Soluble Vascular Cell Adhesion Molecule-1(sVCAM-1) in Kawasaki Disease (급성 발열기 및 아급성기 가와사끼병에서 세포부착분자 sICAM-1, sVCAM-1의 임상적 의의)

  • Rhee, Kang Won;Yun, Sin Weon;Lee, Dong Keun;Choi, Eung Sang;Yoo, Byeong Hoon;Lee, Mi Kyung
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.640-648
    • /
    • 2005
  • Purpose : Kawasaki disease(KD) is known as an acute multi-systemic vasculitis with various immunologic abnormalities. Adhesion of leukocyte to endothelial cells is a key event in the sequence of inflammatory response. This study was performed to investigate the clinical significance of serum soluble intercellular adhesion molecule-1(sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in acute and subacute stages of typical KD for diagnostic and prognostic value. Methods : A typical KD group was 32 patients who were hospitalized from Jan. 2002 to Jun. 2004 was enrolled. Control was 16 non-KD patients with febrile illness. sICAM-1 and sVCAM-1 were measured and compared by Echocardiographic and clinical findings and cardiac troponin T and I. Results : sICAM-1 and sVCAM-1 levels of acute KD were significantly elevated over control(P=0.019 vs. P=0.049, respectively) and sICAM-1 was significantly decreased in subacute stage(P=0.0015). sICAM-1 and sVCAM-1 had positive correlation with each other in both stages(P=0.0067, P=0.015, retrospectively). Neither sICAM-1 nor sVCAM-1 correctly reflected the coronary abnormalities and responsiveness to intravenous gammaglobulin(IVGG) in both stages. But sVCAM-1 was significantly increased in the carditis group in both stages(P=0.025, P=0.014, retrospectively) and had a positive correlation with troponin T(r=0.63, P=0.00063). Conclusion : The levels of sICAM-1 and sVCAM-1 were not very useful tools for detecting and predicting subsequent coronary abnormalities and responsiveness to IVGG in KD patients. However, sVCAM-1 appears to play a significant role in carditis of KD. Further studies are needed about various adhesion molecules and cytokines in the pathogenesis of KD.

Ginsenoside Rg2 Inhibits Lipopolysaccharide-Induced Adhesion Molecule Expression in Human Umbilical Vein Endothelial Cell

  • Cho, Young-Suk;Kim, Chan Hyung;Ha, Tae-Sun;Lee, Sang Jin;Ahn, Hee Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.133-137
    • /
    • 2013
  • Vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), P- and E-selectin play a pivotal role for initiation of atherosclerosis. Ginsenoside, a class of steroid glycosides, is abundant in Panax ginseng root, which has been used for prevention of illness in Korea. In this study, we investigated the mechanism(s) by which ginsenoside Rg2 may inhibit VCAM-1 and ICAM-1 expressions stimulated with lipopolysaccharide (LPS) in human umbilical vein endothelial cell (HUVEC). LPS increased VCAM-1 and ICAM-1 expression. Ginsenoside Rg2 prevented LPS-mediated increase of VCAM-1 and ICAM-1 expression. On the other hand, JSH, a nuclear factor kappa B (NF-${\kappa}B$) inhibitor, reduced both VCAM-1 and ICAM-1 expression stimulated with LPS. SB202190, inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), and wortmannin, phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, reduced LPS-mediated VCAM-1 but not ICAM-1 expression. PD98059, inhibitor of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) did not affect VCAM-1 and ICAM-1 expression stimulated with LPS. SP600125, inhibitor of c-Jun N-terminal kinase (JNK), reduced LPS-mediated ICAM-1 but not VCAM-1 expression. LPS reduced IkappaB${\alpha}$ ($I{\kappa}B{\alpha}$) expression, in a time-dependent manner within 1 hr. Ginsenoside Rg2 prevented the decrease of $I{\kappa}B{\alpha}$ expression stimulated with LPS. Moreover, ginsenoside Rg2 reduced LPS-mediated THP-1 monocyte adhesion to HUVEC, in a concentration-dependent manner. These data provide a novel mechanism where the ginsenoside Rg2 may provide direct vascular benefits with inhibition of leukocyte adhesion into vascular wall thereby providing protection against vascular inflammatory disease.

Suppression of VCAM-1 Expression in Human Aortic Smooth Muscle Cells Treated with Ethanol Extracts of Cynanchum wilfordii Radix, Arctium lappa L., and Dioscorea opposita (백수오, 우엉, 마 추출물 혼합비율에 따른 혈관부착인자 VCAM-1의 발현억제 효과)

  • Cho, Young-Mi;Song, Hae-Seong;Jang, Seon-A;Park, Dae-Won;Shin, Yu Su;Jeong, Yong Joon;Kang, Se Chan
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.525-531
    • /
    • 2016
  • Cynanchum wilfordii Radix (CWR), Arctium lappa L (ALL), and Dioscorea opposite (DO) have been known to improve blood lipid profile, blood pressure, and inflammation. To find the optimal combination ratio of CWR, ALL, and DO in terms of vascular health improvement, we compared the effects of various combinations on gene expression of Vascular cell adhesion protein 1 (VCAM-1) in human aortic smooth muscle cells (HASMC). VCAM-1 mediates endothelial leukocyte adhesion and is upregulated in atherosclerosis. Cells was stimulated by TNF-α (10 ng/㎖, 2h) and treated with various combinations for 24 h. A combination (CADM5, CWR:ALL:DO = 2:1:1) showed the strongest suppression of VCAM-1 so that CADM5 was chosen for further experiments. We performed cell viability test with CADM5 (0, 3.125, 12.5, 25, 50, and 100 ㎍/㎖) and no cytotoxicity was found. We also investigated the effect of CADM5 on protein expression of VCAM-1, ICAM-1, Nrf-2, and HO-1 using western blotting. We found that CADM5 diminished the expression of VCAM-1 and increased the expression of Nrf-2 and HO-1. Therefore, we concluded that CADM5 (CWR:ALL:DO = 2:1:1) effectively improves vascular health by regulating the expression of VCAM-1.

The Effects of Diesel Exhaust Particulates and Particulate Matters on the ICAM-1 and VCAM-1 Expression in the Lung of Asthma-incuced Mouse (디젤분진 및 미세분진이 천식마우스의 폐조직에서 ICAM-1과 VCAM-1의 발현에 미치는 효과)

  • Li, Tian-Zhu;Lee, Soo-Jin;Jang, Yang-Ho;Lee, Jeong-Hak;Park, Se-Jong;Park, Jun-Hong;Chang, Byung-Joon;Lee, Jong-Hwan;Choe, Nong-Hoon
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.396-401
    • /
    • 2007
  • This research investigated whether exposure of diesel exhaust particulate (DEP) and particulate metter (PM) effect on intercellular. adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression in asthma-induced Balb/c and IL-10 knock out (KO) mouse. Mouse was sensitized with intraperitoneal injection with ovalbumin, followed by challenges with intranasal ovalbumin. After induction of asthma mouse placed in the inhalation chamber and exposed to DEP and PM (10 $mg/m^3$). The evidences of pulmonary inflammation were assessed by immunohistochemical stain and westen blot against ICAM-1 and VCAM-1 in the lung tissue. In the immunohistochemical stain, positive reactions for ICAM-1 and VCAM-1 were much stronger in asthma-induced groups and asthma-induced group with DEP or PM than control groups. Although mild positive reactions were appeared in asthma-induced IL-10 KO mice groups, positive reactions were very strong in the asthma-induced group with DEP or PM. In Western blot, expression of VCAM-1 was increased in asthma-induced group with DEP or PM than asthma-induced groups. In the IL-10 KO mouse, ICAM-1 and VCAM-1 expression were increased in asthma-induced group with DEP or PM than asthma-induced groups. DEP and PM exposure have additive effects on the aggravation of inflammatory signs in the asthma-induced murine model. These results suggest that inhalation of DEP and PM in asthmatic patients may aggravate clinical symptoms.

Lobaric Acid Inhibits VCAM-1 Expression in TNF-α-Stimulated Vascular Smooth Muscle Cells via Modulation of NF-κB and MAPK Signaling Pathways

  • Kwon, Ii-Seul;Yim, Joung-Han;Lee, Hong-Kum;Pyo, Suhkneung
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Lichens have been known to possess multiple biological activities, including anti-proliferative and anti-inflammatory activities. Vascular cell adhesion molecule-1 (VCAM-1) may play a role in the development of atherosclerosis. Hence, VCAM-1 is a possible therapeutic target in the treatment of the inflammatory disease. However, the effect of lobaric acid on VCAM-1 has not yet been investigated and characterized. For this study, we examined the effect of lobaric acid on the inhibition of VCAM-1 in tumor necrosis factor-alpha (TNF-${\alpha}$)-stimulated mouse vascular smooth muscle cells. Western blot and ELISA showed that the increased expression of VCAM-1 by TNF-${\alpha}$ was significantly suppressed by the pre-treatment of lobaric acid ($0.1-10{\mu}g/ml$) for 2 h. Lobaric acid abrogated TNF-${\alpha}$-induced NF-${\kappa}B$ activity through preventing the degradation of $I{\kappa}B$ and phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen activated protein (MAP) kinase. Lobaric acid also inhibited the expression of TNF-${\alpha}$ receptor 1 (TNF-R1). Overall, our results suggest that lobaric acid inhibited VCAM-1 expression through the inhibition of p38, ERK, JNK and NF-${\kappa}B$ signaling pathways, and downregulation of TNF-R1 expression. Therefore, it is implicated that lobaric acid may suppress inflammation by altering the physiology of the atherosclerotic lesion.

sICAM-1, sE-selectin, sVCAM-1 Concentration in Patients with Pulmonary Tuberculosis (폐결핵 환자에서 SICAM-1, sE-selectin sVCAM-1농도의 변화)

  • Oh, Sang-Mi;Jang, Jae-Ho;Choi, Sang-In;Lee, Heung-Bum;Lee, Yong-Chul;Rhee, Yang-Keun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1256-1262
    • /
    • 1997
  • Background : Leukocyte-endothelial adhesion molecules have been implicated in the pathogenesis of inflammatory disease. ICAM-1, VCAM-1 and E-selectin are cell surface adhesion molecule on vascular endothelial cells. They are up-regulated by inflammatory cytokines and regulate the adhesion and migration of leukocytes across the endothelium. Tuberculosis, a granulomatous disorder is an infection caused by Mycobacterium tuberculosis. The clinical manifestations of tuberculosis are dependent on the cellular immune response to tubercule bacilli. Circulating adhesion molecules are probably formed by cleavage and release into the circulation of the extracellular domain of the membrane bound form. The elevated levels of circulating adhesion molecules have been reported in numerous disease state. To evaluate their role as markers of disease activity in tuberculosis, we measured a sE-selectin, sVCAM-1 and sICAM-1 levels in the serum with severities of mild, moderate and far advanced pulmonary tuberculosis. Methods : The control and test groups were divided as follows. Group I : control(n=5), Group II : patients with mild pulmonary tuberculosis(n=12), Group III : pateints with moderate pulmonary tuberculosis(n=20), Group IV : patients with far advanced pulmonary tuberculosis(n=19). Serum sICAM-1, sVCAM-1 and sE-selectin were measured by ELISA kit Results : Serum soluble adhesion molecules are elevated in patients with pulmonary tuberculosis, Circulating ICAM-1 levels were significantly elevated in patients with moderate and far advanced pulmonary tuberculosis when compared with control group. When compared with control group, serum sVCAM-1 levels showed significant elevation in patients with mild, moderate and far advanced pulmonary tuberculosis. Serum sE-selectin levels were significantly elevated in patients with far advanced pulmonary tuberculosis when compared with control group. Conclusion : These results suggest that sICAM-1, sVCAM-1, and sE-selectin may be invloved in the pathogenesis of tuberculosis. And, particularly, sICAM-1 and sVCAM-1 may be useful markers of the disease activity.

  • PDF

Curcumin's Effect on ICAM-1 VCAM-1 Expression in Human Umbilical Vein Endothelial Cells (혈관내피세포에서 curcumin이 ICAM-1 및 VCAM-1발현에 미치는 효과)

  • Kim, Kyeong-Su;Na, Cheol;Shin, Byung-Cheul;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2008
  • 목 적 : 동맥경화 유발에 있어서 중요한 역할을 수행하는 부착분자는 혈관내피세포가 염증성 물질에 자극 받아서 생성된다. 본 연구는 항염증성 curcumin이 혈관내피세포 부착분자 발현에 미치는 효과를 조사하였다. 방 법 : 혈관내피세포는 HUVEC을 사용하였고, 염증성 물질 $TNF-\alpha$로 자극하였다. 결 과 : Curcumin은 부착분자 VCAM-1 및 ICAM-1 발현을 억제시켜, 혈관내피세포에 백혈구가 부착되는 것을 억제하였다. Curcumin은 ICAM-1 및 VCAM-1 promoter 활성을 억제하였고, 또한 억제 kB의 인산화를 차단하였다. Curcumin은 NF-kB p65의 핵내 이동을 차단하였고, 세포내 ROS 양을 감소시켰고, JNK 및 p38 인산화를 억제시켰다. 그러나 curcumin은 TNF 수용체 I및 II에 어떠한 영향도 미치지 못했다. 결 론 : Curcumin이 NF-kB 비활성화 및 p38과 JNK의 기능저하를 매개로 VCAM-1 및 ICAM-1의 발현을 억제할 수 있음을 알 수 있었다.

Effects of Plasma Lipoproteins on Expression of Vasular Cell Adhesion Molecule- in Human Microvasuclar Endothelial Cells (혈관내피세포에서 Vascular Cell Adhesion Molecule-1 발현에 대한 혈장 지단백의 효과)

  • 박성희
    • Journal of Nutrition and Health
    • /
    • v.31 no.8
    • /
    • pp.1235-1243
    • /
    • 1998
  • Although an elevated plasma level of high density lipoprotein (HDL) is known as a protective component against the development of atherosclerosis and ensuing coronary heart diseases, the related mechanisms are still not established . It has been clearly demonstrated in the early stages of atherogenesis that adhesion of monocytes and lymphocytes to the vascular endothelium is enhanced via adhesion molecules, and that monocytes and macrophages accumulate in the subendothelial space. The present study has investigated whether isolated plasma HDL plays a role in protection against atherogenesis by inhibiting the expression of vascular cell adhesioin molecule-1(VCAM-1) on the endothelial cells. Effects of plasma native low density lipoprotein (LDL) and ac ethylated LDL(AcLDL) on VCAM-1 expression were also examined by using an immunocytochemical technique. While plasma HDL did not alter the basal expression of VCAM-1 , lipopolysaccharide(LPS) induction of this adhesion modlecule was markedly inhibited at a phyaiological concentration of HDL. In contrast, 30$\mu\textrm{g}$ protein/ml AcLDL increased sifnificantly both basal VCAM-1 expression and its LPD induction , suggesting that this modified LDL enhances leukocyte adhesiion to endothelial cells. Unlike AcLDL , plasma native LDL inhibited significantly VCAM-1 expression. This indicates that LDL did not undergo oxidative modificantion while incubated with endothelial cells. These results suggest that plasam HDL may inhibit atherogenesis by reducing the expression of adhesion molecules, which is a protective mechanism independent of tis reverse cholesterol transport function . Modified LDL is a potent iducer for adhesion molecules in vascular endothelical cells and could play a role in the pathogenesis of atherosclerosis by adhering to blood cells.

  • PDF

Immunohistochemical Evaluation of Angiogenesis Related Markers in Pyogenic Granuloma of Gingiva

  • Seyedmajidi, Maryam;Shafaee, Shahryar;Hashemipour, Golnarsadat;Bijani, Ali;Ehsani, Hodis
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7513-7516
    • /
    • 2015
  • Background: Pyogenic granuloma is a common non-neoplastic connective tissue proliferation. ICAM-1 and VCAM-1 are vascular adhesion molecules and CD34 is a marker for evaluation of angiogenesis. The purpose of this study was to compare the immunohistochemical expression of ICAM-1, VCAM-1 & CD34 in oral pyogenic granuloma and normal gingiva. Materials and Methods: This study was performed on thirty five formalin-fixed, paraffin embedded samples of gingival pyogenic granuloma. Also we used thirty five paraffined blocks of normal gingiva as control group which were taken from crown lengthening surgery. We employed immunohistochemistry staining for our prepared microscopic slides using monoclonal mouse anti-human antibodies against ICAM-1 (CD54), VCAM-1 (CD106) and CD34. Slides were examined under light microscope and then the mean amount of stained vessels also known as microvascular density (MVD) in highly vascularized areas (hot spots) was measured. Paired t-test and repeated measures ANOVA were used to compare the difference between quantitative variables and Chi-square test for qualitative variables in different groups. Pearson correlation coefficient was used to compare relations between quantitative variables. P<0.05 was considered significant. Results: The mean of MVD for ICAM-1, VCAM-1 and CD34 was significantly higher in pyogenic granuloma than normal gingiva (p<0.001 & p<0.001 & p<0.001, respectively). Expression of CD34 in pyogenic granuloma was significantly higher than ICAM-1 and VCAM-1 (P<0.001). Besides, expression of ICAM-1 in normal gingiva, was significantly lower than two other markers (p<0.001). Conclusions: Regarding the results, it seems that ICAM-1, VCAM-1 and CD34 are useful biomarkers in evaluation of vascular and inflammatory lesions such as gingival pyogenic granuloma and the results indicate the role of these biomarkers in pathogenesis of oral pyogenic granuloma.

The Effect of Gamidohongsamul-tang (GDT) on the Gene Expression Levels of eNOS, KLF2, ICAM-1 and VCAM-1 in HUVEC Cells (가미도홍사물탕(加味桃紅四物湯)이 HUVEC cell 내에 eNOS, KLF2, ICAM-1, VCAM-1의 유전자 발현양에 대해 미치는 영향)

  • Lim, Hyun-chan;Jeon, Sang-yoon
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Objectives: This study seeks to investigate the effects of Gamidohongsamul-tang (GDT) on the Gene expression levels of eNOS, KLF2, ICAM-1 and VCAM-1 in HUVEC cells. Methods: HUVEC cells were treated at a concentration of 1, 10, 100 (${\mu}g/ml$) of Gamidohongsamul-tang (GDT). To measure the NOS, KLF2, ICAM-1 and VCAM-1 gene expression in HUVEC cells, the synthesized cDNA was subjected to polymerase chain reaction (PCR) and electrophoresis was performed to verify gene expression level. Results: 1. GDT significantly increased eNOS and KLF2 gene expression. 2. GDT significantly reduced ICAM-1 and VCAM-1 gene expression. Conclusions: These experiments suggest that Gamidohongsamul-tang (GDT) regulates gene expression related with anti-dyslipidemic effects in HUVEC cells. In order to clinically apply this to diseases related to dyslipidemia, such as cardiovascular disease, additional in vivo experiments are needed to verify the anti-dyslipidemic effects of GDT.