An Efficient Visualization Method of Two-Dimensional Vector Fields

2차원 벡터 필드의 효율적인 가시화 방법

  • 정일홍 (대전대학교 컴퓨터공학과)
  • Published : 2009.11.30

Abstract

This paper presents the development of certain highly efficient and accurate method for computing tangent curves for two-dimensional vector fields. Unlike convention methods, such as Runge-Kutta, for computing tangent curves which produce only approximations, the method developed herein produces exact values on the tangent curves based on piecewise linear variation over a triangle in 2D. This new method assumes that the vector field is piecewise linearly defined over a triangle in 2D. It is also required to decompose the rectangular cell into two triangular cells. The critical points can be easily found by solving a simple linear system for each triangle. This method is to find exit points by producing a sequence of points on the curve with the computation of each subsequent point based on the previous. Because points on the tangent curves are calculated by the explicit solution for each triangle, this new method provides correct topologies in visualizing 2D vector fields.

본 논문에서는 2차원 벡터 필드의 탄젠트 곡선을 계산하는 효율적이고 정확한 방법을 제안한다. 탄젠트 곡선 상의 정확한 값을 구하지 못하고 단지 탄젠트 곡선의 근사치를 구하는 Runge-Kutta 같은 종래의 방법과는 달리 여기서 제안한 방법은 2D 삼각형에서 벡터 필드가 선형적으로 변한다는 가정 하에 탄젠트 곡선상의 정확한 값을 계산한다. 새로 제안한 방법은 벡터 필드가 2D 삼각형에서 선형적으로 변한다고 가정한다. 우선 이 방법은 2D에서 사각형 셀을 2개의 삼각형 셀로 분해하는 것을 요구한다. 임계점은 각 삼각형의 간단한 선형 시스템을 풀어서 간단하게 구할 수 있다. 이 방법은 이전 삼각형에서 계산된 탄젠트 곡선상의 점들을 기초로 다음 삼각형에서 탄젠트 곡선상의 계속적인 점들을 생성함으로써 출구 점을 구한다. 탄젠트 곡선상의 점들은 각 삼각형의 명시해에 의해서 계산되었기 때문에 새로운 방법은 2D 벡터 필드를 가시화하는데 정확한 위상을 마련한다.

Keywords

References

  1. A. Globus, C. Levit, and T. Lasinski, "A tool for Visualizing the Topology of Three-dimensional Vector Fields," Proc. Visualization '91, IEEE Computer Society, pp. 33-40, 1991.
  2. J. L. Helman and L. Hesselink, "Representation and Display of Vector Field Topology in Fluid Data Sets," IEEE Computer, Vol.22, No.8, pp. 27-36, Aug. 1989.
  3. J. L. Helman and L. Hesselink, "Surface Presentation of Two- and Three Dimensional Fluid Flow Topology," Proc. Visualization '90, IEEE Computer Society, pp, 6-13, 1990.
  4. J. L. Helman and L. Hesselink, "Visualizing Vector Field Topology in Fluid Flows," IEEE Computer Graphics and Applications, Vol.11, pp, 36-46, May 1991. https://doi.org/10.1109/38.79452
  5. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second edition, Cambridge University Press, Cambridge, 1992.
  6. V. I. Arnold, Ordinary Differential Equations, MIT Press, 1973.
  7. S. Birkhoff and G. Rota, Ordinary Differential Equations, fourth edition, Wiley, NewYork, 1989.
  8. G.M. Nielson, I. - J. Jung, N. Srinivasan, J, Sung and J. -B. Yoon, "Tools for Computing Tangent Curves and Topological Graphs for Visualizing Piecewise Linearly Varying Vector Fields over Triangulated Domains," in:Scientific Visualization: Overview, Methodologies and Techniques, G. Nielson, H. Hagen and H. Muller, editors, IEEE Computer Society Press, Los Alamitos, CA, pp. 527-562, 1997.
  9. G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Third Edition, 1992.
  10. G. M. Nielson, "Visualization in Scientific and Engineering Computation," IEEE Computer, Vol.24, No.9, pp. 58-66, 1991.
  11. G. M. Nielson and A. Kaufman, "Visualization Graduates," IEEE Computer Graphics and Applications, Vol.14, No.5, pp. 17-18, Sep. 1994.
  12. S. -K Ueng, C. Sikorski, and K.-L Ma, "Efficient Streamline, Stremribbon, and Streamtube Constructions on Unstructured Grids," IEEE Transactions of Visualization and Computer Graphics, Vol.2, No.2, pp. 100-108, Jun. 1996. https://doi.org/10.1109/2945.506222
  13. D. Kenwright and D. Lane, "Optimization of Time-Dependent Particle Tracing Tetrahedral Decomposition," Proc. Visualization '95, IEEE Computer Society, pp. 321-328,1995.