DOI QR코드

DOI QR Code

Photodissociation Dynamics of C2H4BrCl: Nonadiabatic Dynamics with Intrinsic Cs Symmetry

  • Lee, Kyoung-Seok (Department of Chemistry and Center for Functional Materials, Pusan National University) ;
  • Paul, Dababrata (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science) ;
  • Hong, Ki-Ryong (Department of Chemistry and Center for Functional Materials, Pusan National University) ;
  • Cho, Ha-Na (Department of Chemistry and Center for Functional Materials, Pusan National University) ;
  • Jung, Kwang-Woo (Department of Chemistry and Institute of Nanoscience & Tech., Wonkwang University) ;
  • Kim, Tae-Kyu (Department of Chemistry and Center for Functional Materials, Pusan National University)
  • Published : 2009.12.20

Abstract

The photodissociation dynamics of 1,2-bromochloroethane ($C_2H_4BrCl$) was investigated near 234 nm. A two-dimensional photofragment ion-imaging technique coupled with a [2+1] resonance-enhanced multiphoton ionization scheme was utilized to obtain speed and angular distributions of the nascent Br($^2P_{3/2}$) and Br${\ast}($^2P_{1/2}$) atoms. The total translational energy distributions for the Br and Br${\ast}$ channels were well characterized by Gaussian functions with average translational energies of 100 and 84 kJ/mol, respectively. The recoil anisotropies for the Br and Br${\ast}$ channels were measured to be ${\beta}$ = 0.49 ${\pm}$ 0.05 for Br and 1.55 ${\pm}$ 0.05 for Br${\ast}$. The relative quantum yield for Br${\ast}$ was found to be ${\Phi}_{Br{\ast}}$ = 0.33 ${\pm}$ 0.03. The probability of nonadiabatic transition between A' states was estimated to be 0.46. The relevant nonadiabatic dynamics is discussed in terms of interaction between potential energy surfaces in Cs symmetry.

Keywords

References

  1. Molina, M. J.; Rowland, F. S. Nature 1974, 248, 810 https://doi.org/10.1038/249810a0
  2. Garcia, R. R.; Solomon, S. J. Geophys. Res. 1994, 99, 12937 https://doi.org/10.1029/94JD00725
  3. Tzeng, W. B.; Lee, Y. R.; Lin, S. M. Chem. Phys. Lett. 1994, 227, 467 https://doi.org/10.1016/0009-2614(94)00837-X
  4. Kim, T. K.; Lee, K. W.; Lee, K. S.; Lee, E. K.; Jung, K. H. Chem. Phys. Lett. 2007, 446, 31 https://doi.org/10.1016/j.cplett.2007.08.044
  5. Zou, P.; McGiven, W. S.; North, S. W. Phys. Chem. Chem. Phys. 2000, 2, 3785 https://doi.org/10.1039/b004349o
  6. Blanchet, V.; Samartzis, P. S.; Wodtke, A. M. J. Chem. Phys. 2009, 130, 034304 https://doi.org/10.1063/1.3058730
  7. Hua, L.; Shen, H.; Zhang, C.; Cao, Z.; Zhang, B. Chem. Phys. Lett. 2008, 460, 50 https://doi.org/10.1016/j.cplett.2008.05.098
  8. Lee, K. S.; Lee, K. W.; Lee, S. K.; Jung, K. H.; Kim, T. K. J. Mol. Spectra. 2008, 249, 43 https://doi.org/10.1016/j.jms.2008.01.010
  9. Sohn, Y.; White, J. M. Bull. Korean Chem. Soc. 2009, 30, 1470 https://doi.org/10.5012/bkcs.2009.30.7.1470
  10. Park, J.; Lee, J.; Sim, K.; Han, J. W.; Yi, W. Bull. Korean Chem. Soc. 2008, 29, 177 https://doi.org/10.5012/bkcs.2008.29.1.177
  11. Eppink, A. T. J. B.; Parker, D. H. J. Chem. Phys. 1999, 110, 832 https://doi.org/10.1063/1.478051
  12. Eppink, A. T. J. B.; Parker, D. H. J. Chem. Phys. 1998, 109, 4758 https://doi.org/10.1063/1.477087
  13. Gougousi, T.; Samartzis, P. S.; Kitsopoulos, J. Chem. Phys. 1998, 108, 5742
  14. Mulliken, R. S. J. Chem. Phys. 1940, 8, 382 https://doi.org/10.1063/1.1750671
  15. Kim, T. K.; Park, M. S.; Lee, K. W.; Jung, K. H. J. Chem. Phys. 2001, 115, 10745 https://doi.org/10.1063/1.1419063
  16. Lee, K. W.; Jee, Y. J.; Jung, K. H. J. Chem. Phys. 2002, 115, 4490
  17. Amatatsu, Y.; Yabushita, S.; Morokuma, K. J. Chem. Phys. 1996, 104, 9783 https://doi.org/10.1063/1.471758
  18. Rozonyi, T.; Gonzalez, L. J. Phys. Chem. A 2008, 112, 5573 https://doi.org/10.1021/jp8011427
  19. Rozonyi, T.; Gonzalez, L. J. Phys. Chem. A 2006, 110, 10251 https://doi.org/10.1021/jp057199s
  20. Zhou, J.; Lau, K. C.; Hassanein, E.; Xu, H.; Tian, S. X.; Jones, B.; Ng, C. Y. J. Chem. Phys. 2006, 124, 034309 https://doi.org/10.1063/1.2158999
  21. Lee, Y. R.; Chen, C. C.; Lin, S. M. J. Chem. Phys. 2004, 120, 1223 https://doi.org/10.1063/1.1633262
  22. Wang, G. J.; Zhang, H.; Zhu, R. S.; Han, K. L.; He, G. Z.; Lou, N. Q. Chem. Phys. 1999, 241, 213 https://doi.org/10.1016/S0301-0104(98)00417-0
  23. Park, M. S.; Jung, Y. J.; Lee, S. H.; Kim, D. C.; Jung, K. H. Chem. Phys. Lett. 2000, 322, 429 https://doi.org/10.1016/S0009-2614(00)00467-X
  24. NIST Atomic Spectra Database: http://physics.nist.gov/cgi-bin/AtData/main_asd
  25. Eppink, A. T. J. B.; Parker, D. H. Rev. Sci. Instrum. 1997, 68, 3477 https://doi.org/10.1063/1.1148310
  26. Hansen, E. W.; Law, P. L. J. Opt. Soc. Am. A 1985, 2, 510 https://doi.org/10.1364/JOSAA.2.000510
  27. Zare, R. N.; Herschbach, D. R. Proc. IEEE 1963, 51, 173 https://doi.org/10.1109/PROC.1963.1676
  28. Orkin, V. L.; Khanaganov, V. G.; Guschin, A. G.; Huie, R. E.; Kurylo, M. J. J. Phys. Chem. A 1997, 101, 9224 https://doi.org/10.1021/jp972293x
  29. Hirayama, K. Handbook of Ultraviolet and Visible Absorption Spectra of Organic Compounds; Plenum Press Data Division, New York, 1967
  30. Mulliken, R. S. J. Chem. Phys. 1935, 3, 513 https://doi.org/10.1063/1.1749716
  31. McGiven, W. S.; Li, R.; Zou, P. ; North, S. W. J. Chem. Phys. 1999, 111, 5771 https://doi.org/10.1063/1.479874
  32. Landau, L. D.; Lifshitz, E. M. Quantum Mechanics 3; Pergamon: New York, 1997
  33. Felder, P. Chem. Phys. 1991, 155, 435 https://doi.org/10.1016/0301-0104(91)80119-3
  34. Felder, P. Chem. Phys. Lett. 1992, 197, 425 https://doi.org/10.1016/0009-2614(92)85795-C
  35. Underwood, J. G.; Powis, I. Phys. Chem. Chem. Phys. 2000, 2, 747 https://doi.org/10.1039/a907905j
  36. Amatatsu, Y.; Morokuma, K. J. Chem. Phys. 1991, 94, 4858 https://doi.org/10.1063/1.460571
  37. Huang, J.; Hedberg, K. J. Am. Chem. Soc. 1990, 112, 2070 https://doi.org/10.1021/ja00162a005

Cited by

  1. Br at 234 nm vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.143
  2. Photodissociation dynamics of bromoiodomethane from the first and second absorption bands. A combined velocity map and slice imaging study vol.20, pp.5, 2018, https://doi.org/10.1039/C7CP07077B
  3. Dynamics of Br(2Pj) Formation in the Photodissociation of Bromobenzene vol.32, pp.2, 2009, https://doi.org/10.5012/bkcs.2011.32.2.659
  4. Theoretical and experimental studies on concerted elimination of 1, 2‐bromochloroethane monocation to C2H4+ and BrCl vol.121, pp.2, 2009, https://doi.org/10.1002/qua.26433