DOI QR코드

DOI QR Code

Solvent Extraction of Zinc from Strong Hydrochloric Acid Solution with Alamine336

  • Lee, Man-Seung (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Nam, Sang-Ho (Department of Chemistry, Mokpo National University)
  • Published : 2009.07.20

Abstract

Solvent extraction reaction of Zn(II) by Alamine336 from strong HCl solution up to 10 M was identified by analyzing the data reported in the literature. The equilibrium constant of this reaction was estimated by considering the complex formation between zinc and chloride ion. The necessary thermodynamic parameters, such as equilibrium constant for the formation of complexes and the interaction parameters, were evaluated from the thermodynamic data reported in the literature. The following solvent extraction reaction and the equilibrium constant was obtained by considering the activity coefficients of solutes present in the aqueous phase with Bromley equation. $Zn^{2+}\;2Cl^{-}\;+\;R_3NHCl_{org}\;=\;ZnCl_3R_3NH_{org},\;K_{ex}\;=\;6.33\;{\times}\;10^2$ There was a good agreement between measured and calculated distribution coefficients of Zn(II).

Keywords

References

  1. Rydberg, J.; Cox, M.; Musikas, C.: Choppin, G. R. Solvent Extraction and Practice; Marcel Dekker, Inc.: NY, 2004
  2. Kongolo, K.: Mwema, M. D.; Banza, A. N.; Gock, E. Minerals Engineering 2003, 16, 1371 https://doi.org/10.1016/j.mineng.2003.09.001
  3. Sayar, A. A.; Filiz, M.; Sayar, A. A. Hydrometallurgy 2007, 86, 27 https://doi.org/10.1016/j.hydromet.2006.10.005
  4. Wassink, B.; Dreisinger, D.; Howard, J. Hydrometallurgy 2000, 57, 235 https://doi.org/10.1016/S0304-386X(00)00116-X
  5. Filiz, M. Hydrometallurgy 2007, 87, 58 https://doi.org/10.1016/j.hydromet.2007.02.001
  6. Yakubu, N. A. Hydrometallurgy 1987, 18, 93 https://doi.org/10.1016/0304-386X(87)90019-3
  7. Lee, M. S.; Lee, K. J.; Oh, Y. J. Mater. Trans. 2004, 45, 2364 https://doi.org/10.2320/matertrans.45.2364
  8. Bromley, L. A. AIChE Journal 1973, 19, 313 https://doi.org/10.1002/aic.690190216
  9. Högfeldt, E. Stability Constants of Metal-Ion Complexes: Part A. Inorganic Ligands; Pergamon: Oxford, 1982
  10. Raposo, J. C.; Sanz, J.; Borge, G.; Olazabal, M. A.; Madariaga, J. M. Fluid Phase Equilibria 1999, 155, 1 https://doi.org/10.1016/S0378-3812(98)00437-3
  11. Belaustegi, Y.; Olazabal, M. A.; Madariaga, J. M. Fluid Phase Equilibria 1999, 155, 21 https://doi.org/10.1016/S0378-3812(98)00459-2
  12. Huifa, G.; Jinglan, S.; Hughes, M. A. Hydrometallurgy 1990, 25, 293 https://doi.org/10.1016/0304-386X(90)90045-4
  13. Yakubu, N. A.; Dudeney, A. W. L. Hydrometallurgy 1987, 18, 93 https://doi.org/10.1016/0304-386X(87)90019-3
  14. Yun, C. K. Hydrometallurgy 1984, 12, 289 https://doi.org/10.1016/0304-386X(84)90002-1

Cited by

  1. Removal of zinc ions as zinc chloride complexes from strongly acidic aqueous solutions by ionic exchange vol.12, pp.8, 2014, https://doi.org/10.2478/s11532-014-0504-8
  2. Transport of Zn (II) by TDDA-Polypropylene Supported Liquid Membranes and Recovery from Waste Discharge Liquor of Galvanizing Plant of Zn (II) vol.2017, pp.2090-9071, 2017, https://doi.org/10.1155/2017/7569354
  3. Treatment of a wastewater from a galvanizing industry containing chromium(VI) and zinc(II) by liquid surfactant membranes technique vol.56, pp.3, 2009, https://doi.org/10.1080/10934529.2020.1871268