DOI QR코드

DOI QR Code

Stereoselective Synthesis of L-Deoxyaltronojirimycin from L-Serine

  • Rengasamy, Rajesh (Division of Applied Life Science (BK21 program), EB-NCRC, Institute of Agriculture & Life Science,Gyeongsang National University) ;
  • Curtis-Long, Marcus J. (12 New Road, Nafferton, Driffield) ;
  • Ryu, Hyung-Won (Division of Applied Life Science (BK21 program), EB-NCRC, Institute of Agriculture & Life Science,Gyeongsang National University) ;
  • Oh, Kyeong-Yeol (Division of Applied Life Science (BK21 program), EB-NCRC, Institute of Agriculture & Life Science,Gyeongsang National University) ;
  • Park, Ki-Hun (Division of Applied Life Science (BK21 program), EB-NCRC, Institute of Agriculture & Life Science,Gyeongsang National University)
  • Published : 2009.07.20

Abstract

(2S,3R)-3-Hydroxy-2-(hydroxymethyl)-3,6-dihydro-2H-pyridine 8, an important precursor for the synthesis of polyhydroxylated piperidine azasugars, has been prepared from L-serine. Highly stereoselective nucleophilic addition to amino aldehyde 5 gave the corresponding allylic alcohol 6 which proceeded to give dihydro-2H-piridine 7a via a Grubbs II catalyzed RCM. Stereoselective H-bond directed epoxidation of allylic alcohol led to the oxiranyl alcohol 9 which was easily converted to L-deoxyaltronojirimycin by regioselective ring opening.

Keywords

References

  1. Azenevo, P. B.; Creemer, L. J.; Daniel, J. K.; King, C. H. R.; Liu, P. S. J. Org. Chem. 1989, 54, 2539 https://doi.org/10.1021/jo00272a015
  2. Butters, T. D.; Dwek, R. A.; Platt, F. M. Glycobiology 2005, 15, 43R https://doi.org/10.1093/glycob/cwi076
  3. Wu, S.-F.; Lee, C.-J.; Liao, C.-L.; Dwek, R. A.; Zitzmann, N.; Lin, Y.-L. J. Virol. 2002, 76, 3596 https://doi.org/10.1128/JVI.76.8.3596-3604.2002
  4. Gross, P. E.; Baker, M. A.; Carver, J. P.; Dennis, J. W. Clin. Cancer Res. 1995, 1, 935
  5. Butters, T. D.; Dwek, R. A.; Platt, F. M. Chem. Rev. 2000, 100, 4683 https://doi.org/10.1021/cr990292q
  6. Kim, J. H.; Long, M. J. C.; Kim, J. Y.; Park, K. H. Org. Lett. 2004, 6, 2273 https://doi.org/10.1021/ol049237g
  7. Kim, J. H.; Curtis-Long, M. J.; Seo, W. D.; Ryu, Y. B.; Yang, M. S.; Park, K. H. J. Org. Chem. 2005, 70, 4082 https://doi.org/10.1021/jo050079w
  8. Jang, K. C.; Choi, S. J.; Kim, J. H.; Lee, J. H.; Lee, B. W.; Park, K. H. Bull. Korean Chem. Soc. 2003, 24, 921 https://doi.org/10.1007/s11814-007-0098-3
  9. Miyake, Y.; Ebata, M. J. Antibiot. 1987, 40, 122 https://doi.org/10.7164/antibiotics.40.122
  10. Kato, A.; Asano, N.; Kizu, H.; Matsui, K.; Watson, A. A.; Nash, R. J. J. Nat. Prod. 1997, 60, 312 https://doi.org/10.1021/np960646y
  11. Carbohydrates: Taylor, C. M.; Barker, W. D.; Weir, C. A.; Park, J. H. J. Org. Chem. 2002, 67, 4466 https://doi.org/10.1021/jo025538x
  12. Carbohydrates: Taylor, C. M.; Weir, C. A. Org. Lett. 1999, 1, 787. https://doi.org/10.1021/ol990763v
  13. Non-carbohydrates: Delair, P.; Brot, E.; Kanazawa, A.; Greene, A. E. J. Org. Chem. 1999, 64, 1383 https://doi.org/10.1021/jo981908z
  14. Non-carbohydrates: Martin, R.; Alcon, M.; Pericas, M. A.; Riera, A. J. Org. Chem. 2002, 67, 6896 https://doi.org/10.1021/jo025832p
  15. An, J. N.; Meng, X. B.; Yao, Y.; Li, Z. J. Carbohydrate Res. 2006, 341, 2200 https://doi.org/10.1016/j.carres.2006.06.002
  16. Rengasamy, R.; Curtis-Long, M. J.; Seo, W. D.; Jeong, S. H.; Jeong, I.-Y.; Park, K. H. J. Org. Chem. 2008, 73, 2898 https://doi.org/10.1021/jo702480y
  17. For similar protocols using N,N-dibenzyl amino aldehydes and Garner's aldehyde: Reetz, M. T. Chem. Rev. 1999, 99, 1121 https://doi.org/10.1021/cr980417b
  18. Takahata, H.; Banba, Y.; Sasatani, M.; Nemoo, H.; Kato, A.; Adachi, I. Tetrahedron 2004, 60, 8199 https://doi.org/10.1016/j.tet.2004.06.112
  19. Takahata, H.; Banba, Y.; Ochi, H.; Nemoto, H. Org. Lett. 2003, 5, 2527 https://doi.org/10.1021/ol034886y
  20. Ferreira, F.; Botuha, C.; Chemla, F.; Perez-Luna, A. J. Org. Chem. 2008, 74, 2238 https://doi.org/10.1021/jo802757f
  21. Mengle, A.; Reiser, O. Chem. Rev. 1999, 99, 1191 https://doi.org/10.1021/cr980379w
  22. Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 17160 https://doi.org/10.1021/ja052939w
  23. Moise, J.; Arseniyadis, S.; Cossy, J. Org. Lett. 2007, 9, 1695 https://doi.org/10.1021/ol0703940
  24. For the relative selectivities and rates in epoxidation of cyclohex-2-en-1-ol and cyclohex-3-en-1-ol, see: Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136 https://doi.org/10.1021/ja00799a061
  25. Chamberlain, P.; Roberts, M. L.; Whitham, G. H. J. Chem. Soc. Perkin 1 1970, 1374
  26. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307 https://doi.org/10.1021/cr00020a002
  27. Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957, 1958 https://doi.org/10.1039/jr9570001958
  28. Takahata, H.; Banba, Y.; Ouchi, H.; Nemato, H.; Kato, A.; Adachi, I. J. Org. Chem. 2003, 68, 3603 https://doi.org/10.1021/jo034137u
  29. Kato, A.; Kato, N.; Kano, E.; Adachi, I.; Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.; Ouchi, H.; Takahata, H.; Asano, N. J. Med. Chem. 2005, 48, 2036 https://doi.org/10.1021/jm0495881
  30. Sowmy Reddy, M.; Narender, M.; Rama Rao, K. Tetrahedron 2007, 63, 8199 https://doi.org/10.1016/j.tet.2007.05.118

Cited by

  1. ChemInform Abstract: Stereoselective Synthesis of L-Deoxyaltronojirimycin (VII) from L-Serine vol.40, pp.51, 2009, https://doi.org/10.1002/chin.200951196
  2. Piperidine azasugars displaying competitive α-rhamnosidase inhibition and their kinetic mechanism vol.54, pp.6, 2011, https://doi.org/10.1007/BF03253176
  3. Rapid and practical synthesis of (−)-1-deoxyaltronojirimycin vol.9, pp.4, 2011, https://doi.org/10.1039/C0OB00747A
  4. Asymmetric synthesis of 1-deoxyazasugars from chiral aziridines vol.9, pp.5, 2011, https://doi.org/10.1039/c0ob00730g
  5. Targeted drugs by olefin metathesis: piperidine-based iminosugars vol.2, pp.3, 2012, https://doi.org/10.1039/C1RA00910A
  6. Synthesis and Characterization of Enantiomerically Pure cis- and trans-3-Fluoro-2,4-dioxa-7-aza-3-phosphadecalin 3-Oxides as Acetylcholine Mimetics and Inhibitors of Acetylcholinesterase vol.95, pp.5, 2012, https://doi.org/10.1002/hlca.201100507
  7. Synthetic Pathways to 3,4,5-Trihydroxypiperidines from the Chiral Pool pp.1434193X, 2018, https://doi.org/10.1002/ejoc.201800943
  8. Synthesis of Piperidine Nucleosides as Conformationally Restricted Immucillin Mimics vol.26, pp.6, 2009, https://doi.org/10.3390/molecules26061652