DOI QR코드

DOI QR Code

Adsorption Reactions of Trimethylgallium and Arsine on H/Si(100)-2x1 Surface

  • Cho, Ji-Eun (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Ghosh, Manik Kumer (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Cheol-Ho (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • Published : 2009.08.20

Abstract

The adsorptions of trimethygallium (TMG) and arsine (As$H_3$) on H/Si(100)-2x1 surface were theoretically investigated. In the case of TMG adsorption, methane loss reaction, surface methylation, hydrogen loss reaction and ring closing reaction channels were found. The mechanism of As$H_3$ adsorption on the surface was also identified. Among these, the methane loss reaction depositing –Ga(C$H_3)_2$ was found to be the major channel due to its low barrier height and the large exothermicity. The surface methylation reaction is the second most favorable channel. In contrast, arsine turned out to be less reactive on the surface, implying that Arsine surface reaction would be the rate limiting step in the overall ALD process.

Keywords

References

  1. Ritala, M.; Leskel$\ddot{a}$, M. In Handbook of Thin Film Materials; Nalwa, H. S., Ed.; Academic Press: San diego, CA, 2001; Vol. 1, Chapter 2
  2. Ritala, M.; Kukli, K.; Rathu, A.; Raisanen, P. I.; Leskel$\ddot{a}$, M.; Sajavaara, T.; Leinonen, J. Science 2000, 288, 319 https://doi.org/10.1126/science.288.5464.319
  3. Leskel$\ddot{a}$, M.; Ritala, K. Solid Thin Films 2002, 409, 138 https://doi.org/10.1016/S0040-6090(02)00117-7
  4. Heyman, A.; Musgrave, C. B. J. Phys. Chem. B 2004, 108, 5718 https://doi.org/10.1021/jp049762x
  5. Taylor, P. J.; Jesser, W. A.; Benson, J. D.; Martinka, M.; Dinan, J. H.; Bradshaw, J.; Lara-Taysing, M.; Leavitt, R. P.; Simonis, G.; Chang, W.; Clark III, W. W.; Bertness, K. A. J. Appl. Phys. 2001, 89, 4365 https://doi.org/10.1063/1.1347000
  6. Yonezu, H.; Furukawa, Y.; Abe, H.; Yoshikawa, Y.; Moon, S.-Y.; Utsumi, A.; Yoshizumi, Y.; Wakahara, A.; Ohtani, M. Opt. Mater. 2005, 27, 799 https://doi.org/10.1016/j.optmat.2004.08.002
  7. Soga, T.; Baskar, K.; Kato, T.; Jimbo, T.; Umeno, M. J. Cryst. Growth 1997, 174, 579 https://doi.org/10.1016/S0022-0248(97)00064-X
  8. Eisenbeiser, K.; Emrick, R.; Droopad, R.; Yu, Z.; Finder, J.; Rockwell, S.; Holmes, J.; Overgaard, C.; Ooms, W. IEEE Electron. Dev. Lett. 2002, 23, 300 https://doi.org/10.1109/LED.2002.1004215
  9. Kipp, L.; Bringans, R. D.; Biegelsen, D. K.; Swartz, L.-E.; Hicks, R. F. Phys. Rev. B 1994, 50, 5448 https://doi.org/10.1103/PhysRevB.50.5448
  10. Miotto, R.; Srivastava, G. P.; Miwa, R. H.; Ferraz, A. C. J. Chem. Phys. 2001, 114, 9549 https://doi.org/10.1063/1.1355766
  11. McDonell, T. L.; Marks, N. A.; Warschkow, O.; Wilson, H. F.; Smith, P. V.; Randy, M. W. Phys. Rev. B 2005, 72, 193307 https://doi.org/10.1103/PhysRevB.72.193307
  12. Northrup, J. E. Phys. Rev. B 1994, 51, 2218
  13. Ushi, H.; Ishiji, K.; Yasuda, H.; Mori, H. J. Cryst. Growth 2006, 289, 76 https://doi.org/10.1016/j.jcrysgro.2005.11.097
  14. Gopalkrishnan, N.; Baskar, K.; Kawanami, H.; Sakata, I. J. Cryst. Growth 2003, 250, 29 https://doi.org/10.1016/S0022-0248(02)02210-8
  15. Kawamura, T.; Takenaka, H.; Hayashi, T.; Tachikawa, M.; Mori, H. Appl. Phys. Lett. 1996, 68, 1969 https://doi.org/10.1063/1.115642
  16. Sakai, S.; Matyi, R. J.; Shichijo, H. J. Appl. Phys. 1988, 63, 1075 https://doi.org/10.1063/1.340010
  17. Yokota, K.; Tamura, S. Thin Solid Films 1999, 349, 84 https://doi.org/10.1016/S0040-6090(99)00185-6
  18. Ullrich, B.; Erlacher, A. J. Phys. D: Appl. Phys. 2005, 38, 4048 https://doi.org/10.1088/0022-3727/38/22/007
  19. Pun, A. F.; Wang, X.; Meeks, J. B.; Zheng, J. P.; Durbin, S. M. J. Appl. Phys. 2004, 96, 6357 https://doi.org/10.1063/1.1806258
  20. Wang, G.; Ogawa, T.; Soga, T.; Jimbo, T.; Umeno, M. J. Cryst. Growth 2000, 221, 172 https://doi.org/10.1016/S0022-0248(00)00681-3
  21. Cadwell, L. A.; Masel, R. I. Surf. Sci. 1994, 318, 321 https://doi.org/10.1016/0039-6028(94)90106-6
  22. Choi, C. H.; Gordon, M. S. Computational Materials Chemistry: Methods and Applications; Curtiss, L. A.; Gordon, M. S., Eds.; Theoretical Studies of Silicon Surface Reactions with Main Group Absorbates, Kluwer Academic Publishers: 2004; Chapter 4, p 125
  23. Schmidt, M. W.; Balbridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comp. Chem. 1993, 14, 1347 https://doi.org/10.1002/jcc.540141112
  24. Fletcher, G. D.; Schmidt, M. W.; Gordon, M. S. Adv. Chem. Physics 1999, 110, 267 https://doi.org/10.1002/9780470141694.ch4
  25. Herhe, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257 https://doi.org/10.1063/1.1677527
  26. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523 https://doi.org/10.1021/j100377a021
  27. Gonzalez, C.; Schelegel, H. B. J. Chem. Phys. 1991, 95, 5853 https://doi.org/10.1063/1.461606
  28. Shoemaker, Jr.; Burgruff, L. W.; Gordon, M. S. J. phys. Chem. A 1999, 103, 3245 https://doi.org/10.1021/jp982600e
  29. Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989, 111, 8551 https://doi.org/10.1021/ja00205a001
  30. Lii, J. H.; Allinger, N. L. J. Am. Chem. Soc. 1989, 11, 8566
  31. Ghosh, M. K.; Choi, C. H. J. Phys. Chem. B 2006, 110, 11277 https://doi.org/10.1021/jp060342c
  32. Halls, M. D.; Raghavachari, K. J. Chem. Phys. 2003, 118, 10221 https://doi.org/10.1063/1.1571513

Cited by

  1. The concerted and stepwise chemisorption mechanisms of isothiazole and thiazole on Si(100)−2 × 1 surface vol.130, pp.2-3, 2011, https://doi.org/10.1007/s00214-011-1035-4
  2. Molecular dynamics simulations of the structure and dynamics of aqueous NaCl solutions on extended quartz surfaces vol.130, pp.15, 2009, https://doi.org/10.1063/5.0062080