Observation of Bottom Water Renewal and Export Production in the Japan Basin, East Sea Using Tritium and Helium Isotopes

  • Hahm, Do-Shik (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Kyung-Ryul (School of Earth and Environmental Sciences, Seoul National University)
  • 발행 : 2008.03.30

초록

Tritium ($^3H$ or T) has been produced mostly by atmospheric nuclear weapon tests, and entered the ocean in the form of water (HTO). As tritium exists as water itself, it has been regarded as an ideal tool to study the transport of water masses. In April 2001 we collected water samples in the western Japan Basin (WJB) for tritium and helium measurement. The timely sampling provided direct evidence of the bottom water formation, resulting in the drastic increase in tritium concentration from 0.3 TU in 2000 to 0.67 TU in 2001. Considering that the new bottom waters were found mostly in the WJB, it implies that maximum 1% of the whole bottom layer below 2600 m should be replaced with the surface water during the severely cold winter 2000 2001. $^3H-^3He$ age, showing the elapsed time since the water left from the surface, can be used to calculate oxygen utilization rate by dividing AOU by the age. Under the condition of 90% oxygen saturation in the surface water, the integration of OUR in the water column below 200 m yields net oxygen consumption of 12 mol $(O_2)m^{-2}yr^{-1}$, which corresponds to the export production of $99\;g\;C\;m^{-2}yr^{-1}$. This estimate is comparable to a previous estimate based on satellite data and implies that the ratio of export to primary production(f-ratio) is as high as 0.5 in the WJB.

키워드

참고문헌

  1. Anderson, J. and J. Sarmiento. 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cy., 8, 65-80 https://doi.org/10.1029/93GB03318
  2. Benson, B. and D. Krause. 1980. Isotopic fractionation of helium during solution: A probe for liquid state. J. Solution Chem., 9, 895-909 https://doi.org/10.1007/BF00646402
  3. Buesseler, K.O., C.H. Lamborg, P.W. Boyd, P.J. Lam, T.W. Trull, R.R. Bidigare, J.K.B. Bishop, K.L. Casciotti, F. Dehairs, M. Elskens, M. Honda, D.M. Karl, D.A. Siegel, M.W. Silver, D.K. Steinberg, J. Valdes, B. Van Mooy, and S. Wilson. 2007. Revisiting carbon flux through the ocean's twilight zone. Science, 316(5824), 567-570 https://doi.org/10.1126/science.1137959
  4. Clarke, W.B., W.J. Jenkins, and Z. Top. 1976. Determination of tritium by mass spectrometric measurement of $^3He$. Int. J. Appl. Radiat. Isot., 27, 515-522 https://doi.org/10.1016/0020-708X(76)90082-X
  5. Doney, S.C., W.J. Jenkins, and J.L. Bullister. 1997. A comparison of ocean tracer dating techniques on a meridional section in the eastern north Atlantic. Deep-Sea Res., 44(4), 603-626 https://doi.org/10.1016/S0967-0637(96)00105-7
  6. Dunne, J.P., R.A. Armstrong, A. Gnanadesikan, and J.L. Sarmiento. 2005. Empirical and mechanistic models for the particle export ratio. Global Biogeochem. Cy., 19(4), GB4026
  7. Falkowski, P., R. Barber, and V. Smetacek. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200-206 https://doi.org/10.1126/science.281.5374.200
  8. Goes, J.I., H.R. Gomes, A. Limsakul, and T. Saino. 2004. The influence of large-scale environmental changes on carbon export in the North Pacific Ocean using satellite and shipboard data. Deep-Sea Res. II, 51, 247-279 https://doi.org/10.1016/j.dsr2.2003.06.004
  9. Hahm, D. and K.-R. Kim. 2001. An estimation of the new production in the southern East Sea using helium isotopes. J. Korean Soc. Oceanogr., 36(1), 19-26
  10. Hahm, D., C.F. Postlethwaite, K. Tamaki, and K.-R. Kim. 2004. Mechanisms controlling the distribution of helium and neon in the Arctic seas: The case of the Knipovich Ridge. Earth Planet. Sci. Lett., 229(1-2), 125-139 https://doi.org/10.1016/j.epsl.2004.10.028
  11. Hahm, D., T.S. Rhee, D.J. Kang, and K.-R. Kim. 2003. Influence of gas transfer velocity parameterization on air-sea CO2 exchange in the East (Japan) Sea. J. Korean Soc. Oceanogr., 38(3), 135-142
  12. Ito, T., M. Follows, and E. Boyle. 2004. Is AOU a good measure of respiration in the oceans? Geophys. Res. Lett., 31. doi: 10.1029/2004GL020900
  13. Jenkins, W.J. 1977. Tritium-helium dating in the Sargasso Sea: A measurement of oxygen utilization rates. Science, 196, 291-292 https://doi.org/10.1126/science.196.4287.291
  14. Jenkins, W.J. 1982. Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems. Nature, 300(5889), 246-248 https://doi.org/10.1038/300246a0
  15. Jenkins, W.J. 1987. $^{3}H \,and \:^{3}He$ in the beta Triangle: Observations of gyre ventilation and oxygen utilization rates. J. Geophys. Oceanog., 17(6), 763-783 https://doi.org/10.1175/1520-0485(1987)017<0763:AITBTO>2.0.CO;2
  16. Jenkins, W.J. 1998. Studying subtropical thermocline ventilation and circulation using tritium and $^{3}He$. J. Geophys. Res., 103, 15817-15831 https://doi.org/10.1029/98JC00141
  17. Jenkins, W.J. and D.W.R. Wallace. 1992. Tracer based inferences of new primary production in the sea. p. 299-316. In: Primary productivity and biogeochemical cycles in the sea, ed. by P. G. Falkowski and A. D. Woodhead. Plenum Press, New York
  18. Kang, D.J., K. Kim, and K.-R. Kim. 2004. The past, present and future of the East/Japan Sea in change: A simple movingboundary box model approach. Prog. Oceanogr., 61, 175-191 https://doi.org/10.1016/j.pocean.2004.06.006
  19. Kang, D.-J., S. Park, Y.-G. Kim, K. Kim, and K.-R. Kim. 2003. A moving- boundary box model (MBBM) for oceans in change: An application to the East/Japan Sea. Geophys. Res. Lett., 30. doi: 10.1029/2002GL016486
  20. Kim, K., K.-R. Kim, Y.-G. Kim, Y.-K. Cho, D.-J. Kang, M. Takematsu, and Y. Volkov. 2004. Water masses and decadal variability in the East Sea (Sea of Japan). Prog. Oceanogr., 61, 157-174 https://doi.org/10.1016/j.pocean.2004.06.003
  21. Kim, K.-R., G. Kim, K. Kim, V. Lobanov, V. Ponomarev, and A. Salyuk. 2002. A sudden bottom-water formation during the severe winter 2000- 2001: The case of the East/Japan Sea. Geophys. Res. Lett., 29(8) https://doi.org/10.1029/2002GL015994
  22. Kim, K. R. and K. Kim. 1996. What is happening in the East Sea (Japan Sea)?: Recent chemical observations during CREAMS 93- 96. J. Korean Soc. Oceanogr., 31
  23. Laws, E.A., P.G. Falkowski, W.O. Smith Jr., and H. Ducklow. 2000. Temperature effects on export production in the open ocean. Global Biogeochem. Cy., 14, 1231-1246 https://doi.org/10.1029/1999GB001229
  24. Lobanov, V., V. Ponomarev, A. Salyuk, A. Sergeev, P. Tishchenko, and V. Zvalinskiy. 2005. Some recent findings and future research plans of POI in relation with the CREAMS/PICES Program. In: Proc. First CREAMS/PICES workshop on EAST-I, ed. by K.R. Kim. Seoul National University, Seoul
  25. Lott, D.E. and W.J. Jenkins. 1984. An automated cryogenic charcoal trap system for helium isotope mass spectrometry. Rev. Sci. Instrum., 55(12), 1982-1988 https://doi.org/10.1063/1.1137692
  26. Lucas, L.L. and M.P. Unterweger. 2000. Comprehensive review and critical evaluation of the half-life of tritium. J. Res. Natl. Inst. Stan., 105(4), 541-549 https://doi.org/10.6028/jres.105.043
  27. Min, D.H. 1999. Studies of large-scale intermediate and deep water circulation and ventilation in the North Atlantic, South Indian and North Pacific Oceans, and in the East Sea (Sea of Japan) using chlorofluorocarbons as tracers. Ph.D. Thesis, University of California, San Diego, CA
  28. Najjar, R.G., X. Jin, F. Louanchi, O. Aumont, K. Caldeira, S.C. Doney, J.-C. Dutay, M. Follows, N. Gruber, F. Joos, K. Lindsay, E. Maier-Reimer, R.J. Matear, K. Matsumoto, P. Monfray, A. Mouchet, J.C. Orr, G.- K. Plattner, J.L. Sarmiento, R. Schlitzer, R.D. Slater, M.-F. Weirig, Y. Yamanaka, and A. Yool. 2007. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Global Biogeochem. Cy., 21. doi:ARTN GB3007
  29. Oh, D., M.K. Park, S.H. Choi, J. Kang, D.S.Y. Park, J.S. Hwang, A. Andreev, G.H. Hong, and K.-R. Kim. 1999. The air-sea exchange of $CO_{2}$ in the East Sea (Japan Sea). J. Oceanogr., 55, 157-169 https://doi.org/10.1023/A:1007833811440
  30. Oh, I.S., V. Zhurbas, and W.S. Park. 2000. Estimating horizontal diffusivity in the East Sea (Sea of Japan) and the northwest Pacific from satellite- tracked drifter data. J. Geophys. Res., 105, 6483-6492 https://doi.org/10.1029/2000JC900002
  31. Ostlund, H. and F. Fine. 1979. Oceanic distribution and transport of tritium. p. 303-314. In: Behavior of tritium in the environment, ed. by IAEA. International Atomic Energy Agency Publication
  32. Park, G.-H., K. Lee, P. Tishchenko, D.-H. Min, M.J. Warner, L. D. Talley, D.-J. Kang, and K.-R. Kim. 2006. Large accumulation of anthropogenic $CO_{2}$ in the East (Japan) Sea and its significant impact on carbonate chemistry. Global Biogeochem. Cy., 20. doi:10.1029/2005GB002676
  33. Park, J.J. 2002. Deep currents from APEX in the East Sea. M.S. Thesis, Seoul National University, Seoul
  34. Ponomarev, V. I. and Y. I. Zuenko. 1995. Ventilation on the Japan Sea by slope convection. p. 81-82. In: PICES workshop on the Okhotsk Sea and adjacent areas, Vladivostok
  35. Postlethwaite, C., E. Rohling, W. Jenkins, and C. Walker. 2005. A tracer study of ventilation in the Japan/East Sea. Deep-Sea Res., 2(52), 11-13
  36. Richardson, T.L. and G.A. Jackson. 2007. Small phytoplankton and carbon export from the surface ocean. Science, 315(5813), 838-840 https://doi.org/10.1126/science.1133471
  37. Senjyu, T., T. Aramaki, S. Otosaka, O. Togawa, M. Danchenkov, E. Karasev, and Y. Volkov. 2002. Renewal of the bottom water after the winter 2000-2001 may spin-up the thermohaline circulation in the Japan Sea. Geophys. Res. Lett., 29, 71149. doi:10.1029/2001GL014093
  38. Seung, Y.H. and J.H. Yoon. 1995. Some features of winter convection in the Japan Sea. J. Oceanogr., 51, 61-73 https://doi.org/10.1007/BF02235936
  39. Sonnerup, R.E. 2001. On the relations among CFC derived water mass ages. Geophys. Res. Lett., 28, 1739-1742 https://doi.org/10.1029/2000GL012569
  40. Sudo, H. 1986. A note on the Japan Sea Proper Water. Prog. Oceanog, 17, 313-336 https://doi.org/10.1016/0079-6611(86)90052-2
  41. Talley, L.D., V. Lobanov, V. Ponomarev, A. Salyuk, P. Tishchenko, I. Zhabin, and S. Riser. 2003. Deep convection and brine rejection in the Japan Sea. Geophys. Res. Lett., 30(4). doi: 10.1029/2002GL016451
  42. Thiele, G. and J.L. Sarmiento. 1990. Tracer dating and ocean ventilation. J. Geophys. Res., 95, 9377-9391 https://doi.org/10.1029/JC095iC06p09377
  43. Tsunogai, S., K. Kawada, S. Watanabe, and T. Aramaki. 2003. CFC indicating renewal of the Japan Sea Deep Water in winter 2000-2001. J. Oceanogr., 59, 685-693 https://doi.org/10.1023/B:JOCE.0000009597.33460.d7
  44. Tsunogai, S., Y.W. Watanabe, K. Harada, S. Watanabe, S. Saito, and M. Nakajima. 1993. Dynamics of the Japan Sea deep water studied with chemical and radiochemical tracers. Deep ocean circulation, Physical and chemical aspects, Elsevier Science Publishers
  45. Warner, M. J., J.L. Bullister, D.P. Wisegarver, R.H. Gammon, and R.F. Weiss. 1996. Basin-wide distributions chlorofluorocarbons CFC- 11 and CFC-12 in the north Pacific: 1985-1989. J. Geophys. Res., 101, 20525-20542 https://doi.org/10.1029/96JC01849
  46. Yamada, K. 2004. Spatial and temporal variability of chlorophyll a concentration and primary production in the Japan Sea observed by satellite remote sensing. Ph.D. Thesis, Nagasaki University, Nagasaki
  47. Zheng, Y., P. Schlosser, J. Swift, and E. Jones. 1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: Implications for new production. Deep-Sea Res., 44, 1923-1943 https://doi.org/10.1016/S0967-0637(97)00046-0