Population Development of the Dinoflagellates Ceratium furca and Ceratium fusus during Spring and Early Summer in Iwa Harbor, Sagami Bay, Japan

  • Baek, Seung-Ho (Graduate School of Environmental and Information Sciences, Yokohama National University) ;
  • Shimode, Shinji (Graduate School of Environmental and Information Sciences, Yokohama National University) ;
  • Han, Myung-Soo (Department of Life Science, Division of Natural Sciences, Hanyang University) ;
  • Kikuchi, Tomohiko (Graduate School of Environmental and Information Sciences, Yokohama National University)
  • 발행 : 2008.03.30

초록

To examine the population development of the dinoflagellates, Ceratium furca and Ceratium fusus, daily field monitoring was conducted between April and July 2003 in the temperate coastal water of Sagami Bay, Japan. During the study period, the concentrations of C. furca were always lower than those of C. fusus. A sharp increase in the densities of both species was recorded on 5 May showing the maximum cell concentrations (C. furca = $14,800\;cells\;L^{-1}$, C. fusus = $49,600\;cells\;L^{-1}$). In the 7 days prior to the May bloom of the Ceratium species (29 April to 1 May), the highest density of the heterotrophic dinoflagellate Noctiluca scintillans was observed. Additionally, a second bloom of C. fusus occurred on 22 July. Here, two causes of the significant increases in the Ceratium populations during the two blooming periods (first time; 1 to 8 May, second time; 15 to 22 July) are presented. First, an increase in the nutrients of the surface layer regenerated by the breakdown of blooms by N.scintillans could be considered as a major cause of the population increase of the two Ceratium species. Second, a decrease in salinity (to 27 psu) was correlated with the later bloom of C. fusus. These results suggest that the population development of the two Ceratium species requires nutrients regenerated after the reduction of the diatom population by N. scintillans and, for C. fusus, continuous low salinity conditions, compared to other environmental factors during the rainy season.

키워드

참고문헌

  1. Anderson, D.M. 1997. Turning back the harmful red tide. Nature, 388, 513-14 https://doi.org/10.1038/41415
  2. Anderson, D.M. and K. Rengefors. 2006. Community assembly and seasonal succession of marine dinoflagellate in a temperature estuary: The importance of life cycle events. Limnol. Oceanogr., 52, 860-873
  3. Baek, S.H., S. Shimode, and T. Kikuchi. 2006. Reproductive ecology of dominant dinoflagellate, Ceratium furca in the coastal area of Sagami Bay. Coast. Mar. Sci., 30, 344-352
  4. Baek, S.H., S. Shimode, and T. Kikuchi. 2007. Reproductive ecology of the dominant dinoflagellate, Ceratium fusus in coastal area of Sagami Bay, Japan. J. Oceanogr., 63, 35-45 https://doi.org/10.1007/s10872-007-0004-y
  5. Baek, S.H. 2007. Physiological and ecological studies on the reproduction biology of the two dominant dinoflagellates Ceratium furca and Ceratium fusus in the Sagami Bay. Ph.D. Thesis, Yokohama National University, Yokohama (In Japanese)
  6. Baek, S.H., S. Shimode, and T. Kikuchi. 2008. Growth of dinoflagellate, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of temperature, light intensity and photoperiod. Harmful algae, 7, 163-173 https://doi.org/10.1016/j.hal.2007.06.006
  7. Baek, S.H., S. Shimode, M.S. Han, and T. Kikuchi. 2008. Growth of dinoflagellate, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients. Harmful algae. (In press)
  8. Blasco, D. 1978. Observation on the diel migration of marine dinoflagellates off the Baja Californian Coast. Mar. Biol., 46, 41-47 https://doi.org/10.1007/BF00393819
  9. Bockstahler, K.R. and D.W. Coats. 1993. Spatial and temporal aspects of mixotrophy in Chesapeake Bay dinoflagellates. J. Euk. Microbiol., 40, 49-60 https://doi.org/10.1111/j.1550-7408.1993.tb04881.x
  10. Chang, J. and E. J. Carpenter. 1985. Blooms of the dinoflagellate Gyrodinium aureolum in a Long Island estuary: Box model analysis of bloom maintenance. Mar. Biol., 89, 83-93 https://doi.org/10.1007/BF00392880
  11. ECOHAB. 1995. The ecology and oceanography of harmful algal blooms: A national research agenda. Wood Hole Oceanographic Institute, Wood Hole. 66 p
  12. Elbrachter, M. 1973. Population dynamics of Ceratium in coastal waters of the Kiel Bay. Oikos, 15, 43-48
  13. Elbrachter, M. and Z.Y. Qi. 1998. Aspect of Noctiluca (Dinophycese) population dynamics. p. 315-335. In: Physiological Ecology of Harmful Algal Blooms, ed. by D.M. Anderson, A.D. Cembella, and M.G. Hallegraeff. NATO ASI, Vol. G 41. Springer-Verlag, Berlin
  14. Eppley, R.W., O.H. Hansen, and J.D.H. Strickland. 1968. Some observation on the vertical migration of dinoflagelltaes. J. Phycol., 4, 333-340 https://doi.org/10.1111/j.1529-8817.1968.tb04704.x
  15. Frost, B.W. and S.M. Bollen. 1992. Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Canadian J. Fish. Aquat. Sci., 49, 1137-1141
  16. Fujiki, T., T. Toda, T. Kikuchi, H. Aono, and S. Taguchi. 2004. Phosphorus limitation of primary productivity during the spring-summer blooms in Sagami Bay, Japan. Mar. Ecol. Prog. Ser., 283, 29-38 https://doi.org/10.3354/meps283029
  17. GEOHAB. 2001. Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. SCOR and IOC, Baltimore and Paris. 86 p
  18. Hasle, G.R. 1954. More on photoactic diurnal migration in marine dinoflagellates. Nytt. Mag. Bot., 2, 139-142
  19. Hogetsu, K. and N. Taga. 1977. Suruga Bay and Sagami Bay. p. 31-172. In: Hydrographic condition, ed. by K. Hogetsu, M. Hatanaka, T. Hanaoka, and T. Kawamura. University of Tokyo Press, Tokyo
  20. Holligan, P.M. and D.S. Harbour. 1977. The vertical distribution and succession of phytoplankton in the western English Channel in 1975 and 1976. J. Mar. Bio. Assoc. U.K., 57, 1075-1093 https://doi.org/10.1017/S002531540002614X
  21. Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes, and J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll. J. Cons. Perm Int. Explor. Mer., 30, 3-15 https://doi.org/10.1093/icesjms/30.1.3
  22. Honjo, T. 1993. Overview on bloom dynamics and physiological ecology of Heterosigma akashiwo. p. 33-41. In: Toxic Phytoplankton Bloom in the Sea. T.J. Smayda and Y. Shimizu. Elsevier, New York
  23. Howarth, R.W. 1988. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Eocl., 19, 89-110 https://doi.org/10.1146/annurev.es.19.110188.000513
  24. Iwata, S. 1985. Chapter 10 Sagami Bay. p. 401-409. In: Oceanography of Japanese Islands, ed. by Oceanographical Society of Japan Coastal, Tokai University Press, Tokyo. (In Japanese)
  25. Kanda, J. Fujiwara, S. H. Kitazato, and Y. Okada. 2003. Seasonal and annual variation in the primary production regime in the central part of Sagami Bay. Prog. Oceanogr., 57, 17-29 https://doi.org/10.1016/S0079-6611(03)00048-X
  26. Li. A., D.K. Stoecker, D.W. Coats, and J.E. Adam. 1996. Ingestion of fluorescently-labeled and phycoerythirin-containing prey by mixotrophic dinoflagellates. Aquat. Microb. Ecol., 10, 139-147 https://doi.org/10.3354/ame010139
  27. Machida, M., M. Fujitomi, K. Hasegawa, T. Kudoh, M. Kai, T. Kobayashi, and T. Kamiide. 1999. Red tide of Ceratium furca along the Pacific coast of central Japan in 1997. Nippon Suisan Gakkaishi, 65, 755-756. (In Japanese) https://doi.org/10.2331/suisan.65.755
  28. Miyaguchi, H., T. Fujiki, T. Kikuchi, V.S. Kuwahara, and T. Toda. 2006. Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res., 28, 313-324 https://doi.org/10.1093/plankt/fbi127
  29. Montani, S., S. Pithakpol, and K. Tada. 1998. Nutrient regeneration in coastal sea by Noctiluca scintillans, a red tide causing dinoflagellate. J. Mar. Biotechnol., 6, 224-228
  30. Mouritsen, N. T. and K. Richardson. 2003. Vertical microscale patchiness in nano- and microplankton distribution in a stratified estuary. J. Plankton Res., 25, 783-797 https://doi.org/10.1093/plankt/25.7.783
  31. Nakamura, Y. 1998. Biomass, feeding and production of Noctiluca scintillans in the Seto Inland Sea, Japan. J. Plankton Res., 20, 2213-2222 https://doi.org/10.1093/plankt/20.11.2213
  32. Nielsen, T.G. 1991. Contribution of zooplankton grazing to the decline of a Ceratium bloom. Limnol. Oceanogr., 36, 1091-1106 https://doi.org/10.4319/lo.1991.36.6.1091
  33. Nordli, E. 1953. Salinity and temperature as controlling factors for distribution and mass occurrence of ceratia. Blyttia, 2, 16-18
  34. Nordli, E. 1957. Experimental studies on the ecology of Ceratia. Oikos, 8, 200-265 https://doi.org/10.2307/3564999
  35. Okaichi, T. and S. Nishio. 1976. Identification of ammonia as the toxic principle of red tide of Noctiluca miliaris. Japanese Bull. Plankton Soc., 23, 75-80. (In Japanese)
  36. Paerl, H.W., J. Rudek, and M.A. Mallin. 1990. Stimulation of phytoplankton production in coastal waters by natural rainfall inputs: Nutritional and trophic implications. Mar. Biol., 107, 247-254 https://doi.org/10.1007/BF01319823
  37. Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford. 173 p
  38. Perez, L. and J. Canteras. 1990. Influence of tidal conditions and river volume on phytoplankton distribution and composition in the Pas estuary (Northern Spain). Scient. Mar., 54, 77-88
  39. Qasim, S.Z., P.M. Bhattathiri, and V.P. Devassy. 1972. The influence of salinity on the rate of photosynthesis and abundance of some tropical phytoplankton. Mar. Biol., 12, 200-206 https://doi.org/10.1007/BF00346767
  40. Qasim, S.Z., P.M. Bhattathiri, and V.P. Devassy. 1973. Growth kinetics and nutrient requirements of two tropical marine phytoplankters. Mar. Biol., 21, 299-304 https://doi.org/10.1007/BF00381086
  41. Ryther, J.H. and W.M. Dunstan.1971. Nitrogen, phosphorus and, eutrophication in the coastal marine environment. Science, 171, 1008-1013 https://doi.org/10.1126/science.171.3975.1008
  42. Satoh, F., K. Hamasaki, T. Toda, and T. Taguchi. 2000. Summer phytoplankton bloom in Manazuru Harbor, Sagami Bay, central Japan. Plankton Biol. Ecol., 47, 73-79
  43. Shikata, T., S. Nagasoe, T. Matsubara, Y. Yamasaki, Y. Shimasaki, Y. Oshima, and T. Honjo. 2007. Effects of temperature and light on cyst germination and germinated cell survival of the noxious raphidophyte Heterosigma akashiwo. Harmful Algae, 6, 700-706 https://doi.org/10.1016/j.hal.2007.02.008
  44. Smalley, G.W., D.W. Coats, and E.J. Adam. 1999. A new method using fluorescents microspheres to determine grazing on ciliates by the mixotrophic dinoflagellate Ceratium furca. Aquat. Microb. Ecol., 17, 167-179 https://doi.org/10.3354/ame017167
  45. Smalley, G.W. and D.W. Coats. 2002. Ecology of the red -tide dinoflagellate Ceratium furca: Distribution, mixotrophy, and garzing impact on ciliate populations of Chesapeake Bay. J. Eukaryot Microbiol., 49, 64-74
  46. Smalley, G.W., D.W. Coats, and D.K. Stoecker. 2003. Feeding in the mixotrophic dinoflagellate Ceratium furca is influenced by intracellular nutrient concentrations. Mar. Ecol. Prog. Ser., 262, 137-151 https://doi.org/10.3354/meps262137
  47. Smayda, T. J. 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Ocernog., 42, 1137-1153 https://doi.org/10.4319/lo.1997.42.5_part_2.1137
  48. Steidinger, K., M. Burklew, and R. Ingle. 1973. The effects of Gymnodinium breve toxin on estuarine animals. p. 179-202. In: Marine pharmacology: Action of marine biotoxins at the cellular level, ed. by D. Martine and G. Padilla. Academic Press, NY
  49. Stoecker, D.K. 1998. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur. J. Protistol., 34, 281-290 https://doi.org/10.1016/S0932-4739(98)80055-2
  50. Sullivan, J.M. and E. Swift. 1995. Photoenhancement of bioluminescence capacity in natural and laboratory populations of the autotrophic dinoflagellate Ceratium fusus (Ehrenb.) Dujardin. J. Geophys. Res., 100, 6565-6574 https://doi.org/10.1029/94JC01511
  51. Suzuki, R. and T. Ishimaru. 1990. An improved method for the determination of phytoplankton chlorophyll using N,Ndimethylformamide. J. Oceanogr. Soc. Japan, 46, 190-194 https://doi.org/10.1007/BF02125580
  52. Tada, K., S. Pithakpol, R.Yano, and S. Montani. 2000. Carbon and Nitrogen Content of Noctiluca scintillans, in the Seto Inland Sea, Japan. J. Plankton Res., 22, 1203-1211 https://doi.org/10.1093/plankt/22.6.1203
  53. Toriumi, S. 1976. On the seasonal and vertical appearance of Ceratium species in Aburatsubo Bay, Kanagawa Prefecture. Bull. Japanese Soc. Phycol., 24, 55-61
  54. Weiler, C.S. and S.W. Chisholm. 1976. Phased cell division in natural populations of Marine dinoflagellates from shipboard cultures. J. Exp. Mar. Biol. Ecol., 25, 239-247 https://doi.org/10.1016/0022-0981(76)90126-X
  55. Weiler, C.S. and R.W. Eppley.1979. Temporal pattern of division in the dinoflagellate genus Ceratium and its application to the determination of growth rate. J. Exp. Mar. Biol. Ecol., 31, 1-24 https://doi.org/10.1016/0022-0981(78)90132-6
  56. Whittington, J., B. Sherman, D. Green, and R.L. Oliver. 2000. Growth of Ceratium hirundinella in a subtropical Australian reservoir: The role of vertical migration. J. Plankton Res., 22, 1025-1045 https://doi.org/10.1093/plankt/22.6.1025