DOI QR코드

DOI QR Code

Electrical Properties of ZnO-Bi2O3-Sb2O3 Ceramics

ZnO-Bi2O3-Sb2O3 세라믹스의 전기적 특성

  • Published : 2008.08.01

Abstract

In this study, it has been investigated on the changing behavior of electrical properties in $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0 and 0.5) ceramics. The samples were prepared by conventional ceramic process, and then characterized by I-V, C-V curve plots, impedance and modulus spectroscopy (IS & MS) measurement. The electrical properties of ZBS systems were strongly dependent on Sb/Bi. In ZBS systems, the varistor characteristics were deteriorated noticeably with increasing Sb/Bi and the donor density and interface state density were increased with increasing Sb/Bi. On the other hand, we observed that the grain boundary reacted actively with the ambient oxygen according to Sb/Bi ratio. Especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature. Besides, the increased pyrochlore and $\beta$-spinel phase with Sb/Bi ratio caused the distributional inhomogeneity in the grain boundary barrier height and the temperature instability. To the contrary, the grain boundary layer was relatively homogeneous and more stable to temperature change and kept the system highly nonlinear at high Bi-rich phase contents.

Keywords

References

  1. D. R. Clarke, "Varistor ceramics", J. Am. Ceram. Soc., Vol. 82, No. 3, p. 485, 1999 https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  2. K. Eda, "Zinc oxide varistors", IEEE Electrical Insulation Magazine, Vol. 5, No. 6, p. 28, 1989
  3. R. Einzinger, "Metal oxide varistors", Ann. Rev. Mater. Sci., Vol. 17, p. 299, 1987 https://doi.org/10.1146/annurev.ms.17.080187.001503
  4. L. M. Levinson and H. R. Philipp, "Znic oxide varistors-a review", Am. Ceram. Soc. Bull., Vol. 65, No. 4, p. 639, 1986
  5. M. Inada and M. Matsuoka, "Advances in Ceramics, Vol. 7", American Ceramic Society, Columbus, OH, p. 91, 1983
  6. J. Kim, T. K. Kimura, and T. Yamaguchi, "Sintering of zinc oxide doped with antimony oxide and bismuth oxide", J. Am. Ceram. Soc., Vol. 72, No. 8, p. 1390, 1989 https://doi.org/10.1111/j.1151-2916.1989.tb07659.x
  7. J. Ott, A. Lorenz, M. Harrer, E. A. Preissner, C. Hesse, A. Feltz, A. H. Whitehead, and M. Schreiber, "The influence of $Bi_2O_3$ and $Sb_2O_3$ on the electrical properties of ZnO- based varistors", J. Electroceram., Vol. 6, No. 2, p. 135, 2001 https://doi.org/10.1023/A:1011408818555
  8. A. Mergen and W. E. Lee, "Microstructural relations in BZS pyrochlore-ZnO mixtures", J. Euro. Ceram. Soc., Vol. 17, No. 8, p. 1049, 1997 https://doi.org/10.1016/S0955-2219(96)00248-8
  9. E. Olsson and G. L. Dunlop, "Characterization of individual interfacial barriers in a ZnO varistor material", J. Appl. Phys., Vol. 66, No. 8, p. 3666, 1989 https://doi.org/10.1063/1.344453
  10. F. Greuter and G. Blatter, "Electrical properties of grain boundaries in polycrystalline compound semiconductors", Semicond. Sci. Technol., Vol. 5, No. 2, p. 111, 1990 https://doi.org/10.1088/0268-1242/5/2/001
  11. M. Matsuoka, "Nonohmic properties of zinc oxide ceramics", Jpn. J. Appl. Phys., Vol. 10, No. 6, p. 736, 1971 https://doi.org/10.1143/JJAP.10.736
  12. J. P. Gambino, W. D. Kingery, G. E. Pike, H. R. Philipp, and L. M. Levinson, "Grain boundary electronic states in some simple ZnO varistors", J. Appl. Phys., Vol. 61, No. 7, p. 2571, 1987 https://doi.org/10.1063/1.337934
  13. R. A. Winston and J. F. Cordaro, "Grain-boundary interface electron traps in commercial zinc oxide varistors", J. Appl. Phys., Vol. 68, No. 12, p. 6495, 1990 https://doi.org/10.1063/1.346848
  14. F. Stucki and F. Greuter, "Key role of oxygen at zinc oxide varistor grain boundaries", Appl. Phys. Lett., Vol. 57, No. 5, p. 446, 1990 https://doi.org/10.1063/1.103661
  15. M. Andres-Verges and A. R. West, "Impedance and modulus spectroscopy of ZnO varistors", J. Electroceram., Vol. 1, No. 2, p. 125, 1997 https://doi.org/10.1023/A:1009906315725
  16. L. Ernst, "Current Topics in Materials Science Vol. 7", North-Holland, Amsterdam, p. 364, 1981
  17. R. Einzinger, "Advances in Ceramics, Vol. 1", American Ceramic Society, Columbus, OH, p. 359, 1981
  18. M. Bartkowiak, G. D. Mahan, F. A. Modine, M. A. Alim, and R. Lauf, "Voronoi network model of ZnO varistors with different types of grain boundaries", J. Appl. Phys., Vo. 80, No. 11, p. 6516, 1996 https://doi.org/10.1063/1.363645
  19. K. Mukae, K. Tsuda, and I. Nagasawa, "Capacitance-vs-voltage characteristics of ZnO varistors", J. Appl. Phys., Vo. 50, No. 6, p. 4475, 1979 https://doi.org/10.1063/1.326411
  20. L. F. Lou, "Semiconducting properties of ZnO-grain-boundary-ZnO junctions in ceramic varistors", Appl. Phys. Lett., Vol. 36, No. 7, p. 570 1980 https://doi.org/10.1063/1.91549
  21. I. M. Hodge, M. D. Ingram, and A. R. West, "Impedance and modulus spectroscopy of polycrystalline solid electrolytes", J. Electroanal. Chem., Vol. 74, No. 2, p. 125, 1976 https://doi.org/10.1016/S0022-0728(76)80229-X
  22. J. R. Macdonald, "Impedance Spectroscopy: Emphasizing Solid materials and Systems", Wiley, New York, p. 1, 1987
  23. 홍연우, 김진호, "Mn을 첨가한 $ZnO-Bi_2O_3-Sb_2O_3$계 바리스터의 상발달과 소결거동", 한국세라믹학회지, 37권, 7호, p. 651, 2000
  24. 홍연우, "직류 및 교류 유전함수를 이용한 MtrO-doped $ZnO-Bi_2O_3-Sb_2O_3$ (Mtr=Mn,Co,Ni, Cr) 계의 입계특성 해석", 박사학위논문, 경북대학교, 2004
  25. K. A. Abdullah, A. Bui, and A. Loubiere, "Low frequency and low temperature behavior of ZnO-based varistor by ac impedance measurements", J. Appl. Phys., Vol. 69, No. 7, p. 4046, 1991 https://doi.org/10.1063/1.348414

Cited by

  1. Sintering and Electrical Properties of Mn-doped ZnO-TeO2Ceramics vol.22, pp.1, 2009, https://doi.org/10.4313/JKEM.2009.22.1.022