References
- Benoit Van, D.N. (2003), "Stochastic finite elements for elastodynamic: Random field and shape uncertainty modeling using direct and modal perturbation-based approaches", PhD thesis, Louvain-la-Neuve, May
- Chang, T.P. (1994), "Random vibration analysis of non linear hysteretic plates", J. Sound Vib., 172(4), 539-547 https://doi.org/10.1006/jsvi.1994.1194
- Fredholm, I. (1903), "Sur Une Class d'equations Fonctionnells", J. Acta Mathematica, 27, 365-390. (in French) https://doi.org/10.1007/BF02421317
- Galal, O.H., El-Tawil, M.A., EL-Tahan, W. and Mahmoud, A.A. (2005), "Spectral SFEM analysis for structural systems with stochastic operator under stochastic excitation", J. Eng. Appl. Sci., 52(4), 661-679
- Ghanem, R. and Spanos, P. (1991), "Stochastic Finite Elements: Spectral Approach", Springer Verlag, N.Y
- Ghanem, R. and Spanos, P.D. (1990), "Polynomial chaos in stochastic finite element", J. Eng. Mech., ASCE, 57(1), 197-202
- Kaminski, M. (2002), "Stochastic perturbation approach to engineering structure variability by the finite difference method", J. Sound Vib., 251(4), 651-670 https://doi.org/10.1006/jsvi.2001.3850
- Lawanwisut, W., Li, C.Q. and Novak, D. (2003), "Efficient simulation of random fields using orthogonal transformation and latin hypercube sampling", Int. J. Mater. Struct. Reliab., 1(1), 19-29
- Lin, S.C. (2000), "Buckling failure analysis of random composite laminates subjected to random loads", Int. J. Solids Struct., 37, 7563-7576 https://doi.org/10.1016/S0020-7683(99)00305-4
- Noh, H.C. (2004), "A formulation for stochastic finite element analysis of plate structures with random poisson's ratio", J. Comput. Meth. App. Mech. Eng., 193(45-47), 4857-4873 https://doi.org/10.1016/j.cma.2004.05.007
- Przewlocki, J. and Gorski, J. (2001), "Strip foundation on 2-D and 3-D random subsoil", J. Probabilistic Eng. Mech., 16, 121-136 https://doi.org/10.1016/S0266-8920(00)00014-X
- Pukl, R., Novak, D. and Bergmeister, K. (2003), "Reliability assessment of concrete structures", in Bicanic, N. et al., eds., "Computational Modelling of Concrete Structures", Proceedings of the Euro-C 2003 conference, Swets & Zeitlinger B.V., Lisse, pp.793-803, The Netherlands
- Rahman, S. and Rao, B.N. (2001), "A perturbation method for stochastic meshless analysis in elasostatics", Int. J. Numer. Meth. Eng., 50(8), 1969-1991 https://doi.org/10.1002/nme.106
- Rahman, S. and Xu, H. (2005), "A meshless method for computational structure mechanics", Int. J. Comput. Eng. Sci. Mech., 6, 41-58 https://doi.org/10.1080/15502280590888649
- Shinozuka, M. and Nomoto, T. (1980), "Response variability due to spatial randomness of material properties", Technical Report, Dept. of Civil Engrg., Columbia Univ., New York
- Van Tree, H.L. (1968), Detection, Estimation and Modulation Theory, Part I, Wiley, New York
- Vouwenvelder, A.C.W.M. (2004), "Spatial correlation aspects in deterioration models", in Stangenberg et al., eds., ICLODC 2004, Proceedings of the 2nd International Conference Lifetime-Oriented Design Concepts, Ruhr-University Bochum, pp.31-39, Germany
- Wiener, N. (1938), "The Homogenous Chaos", Am. J. Math., 60, 897-963 https://doi.org/10.2307/2371268
- Young, T.H., Lee, C.W. and Chen, F.Y. (2002), "Dynamic stability skew plates subjected to aerodynamic and random in-plane force", J. Sound Vib., 250(3), 401-414 https://doi.org/10.1006/jsvi.2001.3923
Cited by
- Dynamic eigenvalue analysis of structures with interval parameters based on affine arithmetic vol.33, pp.4, 2009, https://doi.org/10.12989/sem.2009.33.4.539
- A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion vol.2013, 2013, https://doi.org/10.1155/2013/950469
- Upwind Finite-Volume Solution of Stochastic Burgers’ Equation vol.03, pp.11, 2012, https://doi.org/10.4236/am.2012.331247
- Stochastic 2D Incompressible Navier-Stokes Solver Using the Vorticity-Stream Function Formulation vol.2013, 2013, https://doi.org/10.1155/2013/903618
- Perturbation based stochastic isogeometric analysis for bending of functionally graded plates with the randomness of elastic modulus vol.17, pp.7, 2008, https://doi.org/10.1590/1679-78256066
- A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis vol.75, pp.3, 2008, https://doi.org/10.12989/sem.2020.75.3.311