References
- P. Borwein, T. Erdelyi, R. Ferguson, and R. Lockhart, On the zeros of cosine polynomials: solution of an old problem of Littlewood (submitted)
- P. Borwein, T. Erdelyi, and F. Littmann, Zeros of polynomials with finitely many different coefficients, Trans. Amer. Math. Soc. (to appear)
- P. Borwein, K. G. Hare, and M. J. Mossinghoff, The Mahler measure of polynomials with odd coefficients, Bull. Lond. Math. Soc. 36 (2004), no. 3, 332-338 https://doi.org/10.1112/S002460930300287X
- D. W. Boyd, Pisot and Salem numbers in intervals of the real line, Math. Comp. 32 (1978), no. 144, 1244-1260 https://doi.org/10.2307/2006349
- T. Erdelyi, On the zeros of polynomials with Littlewood-type coefficient constraints, Michigan Math. J. 49 (2001), no. 1, 97-111 https://doi.org/10.1307/mmj/1008719037
- J. Konvalina and V. Matache, Palindrome-polynomials with roots on the unit circle, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 2, 39-44
- P. Lakatos, On a number theoretical application of Coxeter transformations, Riv. Mat. Univ. Parma (6) 3 (2000), 293-301
- P. Lakatos, On polynomials having zeros on the unit circle, C. R. Math. Acad. Sci. Soc. R. Can. 24 (2002), no. 2, 91-96
- P. Lakatos, On zeros of reciprocal polynomials, Publ. Math. Debrecen 61 (2002), no. 3-4, 645-661
- P. Lakatos and L. Losonczy, On zeros of reciprocal polynomials of odd degree, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 60, 8 pp
- P. Lakatos, Self-inversive polynomials whose zeros are on the unit circle, Publ. Math. Debrecen 65 (2004), no. 3-4, 409-420
- M. Marden, Geometry of Polynomials, Second edition. Mathematical Surveys, No. 3 American Mathematical Society, Providence, R.I. 1966
- I. D. Mercer, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. 49 (2006), no. 3, 438-447 https://doi.org/10.4153/CMB-2006-043-x
- K. Mukunda, Littlewood Pisot numbers, J. Number Theory 117 (2006), no. 1, 106-121 https://doi.org/10.1016/j.jnt.2005.05.009
- R. Salem, Algebraic Numbers and Fourier Analysis, D. C. Heath and Co., Boston, Mass. 1963
- A. Schinzel, Self-inversive polynomials with all zeros on the unit circle, Ramanujan J. 9 (2005), no. 1-2, 19-23 https://doi.org/10.1007/s11139-005-0821-9
- C. L. Siegel, Algebraic integers whose conjugates lie in the unit circle, Duke Math. J. 11 (1944), 597-602 https://doi.org/10.1215/S0012-7094-44-01152-X
- C. J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull. Lond. Math. Soc. 3 (1971), 169-175 https://doi.org/10.1112/blms/3.2.169
- J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall Series in Automatic Computation Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964
Cited by
- A family of self-inversive polynomials with concyclic zeros vol.401, pp.2, 2013, https://doi.org/10.1016/j.jmaa.2012.12.048
- On Littlewood Polynomials with Prescribed Number of Zeros Inside the Unit Disk vol.67, pp.03, 2015, https://doi.org/10.4153/CJM-2014-007-1