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UNIMODULAR ROOTS OF RECIPROCAL LITTLEWOOD
POLYNOMIALS

PAULIUS IDRUNGILAS

ABSTRACT. The main result of this paper shows that every reciprocal
Littlewood polynomial, one with {—1, 1} coefficients, of odd degree at
least 7 has at least five unimodular roots, and every reciprocal Little-
wood polynomial of even degree at least 14 has at least four unimodular
roots, thus improving the result of Mukunda. We also give a sketch of
alternative proof of the well-known theorem characterizing Pisot numbers
whose minimal polynomials are in

d—1

An = {Xd + Z apr X~ e Z[IX]:ar =N, 0<k<d~ 1}
=0

for positive integer N 2> 2.

1. Introduction

In this paper we study unimodular roots of reciprocal Littlewood polyno-
mials (those with coeflicients in {—1, 1}). Borwein, Erdélyi, and Littmann [2]
proved that any polynomial in

I f)
K, = Z(LA.XI" : lag| = |an| =1 and |ag] <1
k=0

has at least 8 /nlogn zeros in ball with center on the unit circle and radius

337r1c\’§£. Thus polynomials from KA,, have quite many zeros near the unit circle.
One may naturally ask how many unimodular roots a polynomial in K,, can
have? Clearly, every Littlewood polynomial is in A,,. Mercer [13] proved that
some special Littlewood polynomials, the so called skewsymetric polynomials,
have no roots on the unit circle. Thus some additional constraints must be layed
on a polynomial from A, for it to have unimodular roots. Usually one requires
a polynomial to be reciprocal (a polynomial f(.X) of degree d is called reciprocal
if f(X) = X?f(1/X)). Lakatos and Losonczy [11] considered reciprocal poly-
nomials having all their zeros on the unit circle. More precisely, they proved
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that all zeros of the reciprocal polynomial P, (X) = > 1 ax X" € C[X] of
degree m > 1 are on the unit circle if |a,,| > %Zz:ll lax| (see also [8], [9],
[10]). Recently Schinzel [16] generalized this result. Konvalina and Matache
[6] obtained some sufficient conditions for a reciprocal polynomial to have at
least one unimodular root.

Borwein, Erdélyi, and Littmann [2] asked what is the minimum number of
unimodular roots of reciprocal Littlewood polynomial of degree n” Recently
Borwein, Erdélyi, Ferguson, and Lockhart [1] proved that the average number
of unimodular roots of reciprocal Littlewood polynomials of degree n is at
least n/4. It is believed that the minimum number of unimodular roots of
such polynomials tend to infinity with n, but this does not appear to be easy.
Erdélyi [5] proved that every reciprocal Littlewood polynomial has at least one
unimodular root (see also [13]). Recently Mukunda [14] improved this result for
odd degree reciprocal Littlewood polynomials by showing that every reciprocal
Littlewood polynomial of odd degree at least 3 has at least three unimodular
roots. The main result of this paper is

Theorem 1. Every reciprocal Littlewood polynomial of odd degree d > 7 has
at least five unimodular roots. Fvery reciprocal Littlewood polynomial of even
degree d > 14 has at least four unimodular roots.

Theorem 1 sharpens the result of Mukunda. The bounds on d of this theorem
are sharp, since the polynomial ¢o(X) = X®—X*— X3 - X2 - X +1 has exactly
three unimodular roots, and the polynomial p(X) = X2+ X1 4 X104 X9 4
X8+ X" - X604+ X%+ X*+ X3+ X? + X +1 has exactly two unimodular
roots. The key tools in the proof of Theorem 1 is Lemma 5 and Theorem 2.

A Pisot number is a real algebraic integer a > 1, all of whose conjugates lie
inside the open unit disc. The set of all Pisot numbers is usually denoted by S.
This set is known to be closed (see [15]), and its minimum is known to be the
largest root of X3 — X — 1, which is approximately 1.324717 - - - (see [17], [18]).
Mukunda [14] determined all Pisot numbers whose minimal polynomials are
Littlewood polynomials. The smallest such Pisot number is the golden ratio

(14 v/5)/2 (see [3]). Denote

d—1
ANz{XdJrZakX’“eZ[X] : ak:iN,nggd—l}
k=0

for positive integer N > 2. Next theorem is well-known ([19] p.51-52, [7]) It
determines all Pisot numbers whose minimal polynomials lie in Ap.

Theorem 2. Let v, be a Pisot number of degree n whose minimal polynomial
P,(X) € An. Then

P, (X)=X"-NX"!'-NX"?-...— NX - N.

The sequence 7y, s strictly increasing and converges to N + 1.
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Mukunda [14] proved this theorem for NV = 1 using an algorithm constructed
by Boyd [4] for determining all Pisot numbers in a real interval. In Section 2, we
give a sketch of alternative proof of Theorem 2 which is straight generalization
of Mukunda’s proof.

2. Pisot numbers: the proof of Theorem 2

Our proof of Theorem 2 is straight generalization of proof of Theorem 1 in
[14] (Section 3). Thus we describe only the deviations of this proof.
The proof of the next lemma can be found in [12].

Lemma 3. Let f(X) =", _,a X* be a polynomial with complez coefficients,
with a, # 0. If f(¢) =0, then | (] < 1+ max{lax/a,| : 0 <k <n~1}.

Proof of Theorem 2. Let a be a Pisot number whose minimal polynomial P{X)
€ Anx. Then a > N, since P(0) = +N. Lemma 3 implies that < N + 1.
Thus, all Pisot numbers, whose minimal polynomials are in Ay, must lie in
the interval [V, N + 1].

Now we use an algorithm described in [14] (Section 2) to construct Pisot
numbers from interval [N, N + 1] whose minimal polynomials are in Ay. We
claim that

1. Di(X) = X"+ NYF14 .+ NX+N fork>1
2. wy = N(N )—]\'—1 for k > 1,

3. wf >N(N+1)*+N+1 fork>2,

4. v = N(N +1)* + 1.

The proof of these claims is by induction on k. First, we work out the first two
cases (k = 1,2).

Case k£ = 1. Polynomial D{(X) = —-X +d; € Ay gives Pisot number if and
only if dy = N. Thus, ug = N. E}(X)=~-NX+1landw, =d? —1=N?-1.
Similarly, Dy (X) = X + N and E/ (X) = NX + 1.

Case k =2. Let Dy(X) = —X?+d X +dy and E5(X) = —doy X? —d; X + 1.
Then we have DQ(JX’ /Eg( X ]\’T+U1.X+IU2‘Y2 +4--- . Thus DQ()() - Eg(.X') .
(N +u X 4+ we X7 ) Comparing coefficients we obtaindy = 2, u1 = (N+
1)d; and wy = u?/( J\ +1)4+N?—-1. We wish Dy(X) to liein Ax. Thus d; = +N,

=+N(N +1) and moquaht}. up 2 ui—1=N?—1implies u; = N(N +1).

Now we have Dy(X) = —X? 4+ NX + N, E»(X) = —-NX? - NX + 1 and
we = N(N+1)2— N —1. It is casy to check that DJ (X) = X? %X%—N,

Ef(x) = NXx? - MM¥Ux 41 wf = N3NV +1)2/(N -1) - N2 +1 >
N(N + 1) + N + 1. Finally, we obtain v = N(N + 1)? + 1 (see equality (10)
in [14]).

We skip the induction step since it is analogous to that of Mukunda’s. As in
[14] we use wy < up < ’Uk to obtain inequalities for ux : N(N+1)¥  —N -1 K
ur < N(N + 1)* + 1. To obtain ur = N(N + 1)*, we need
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Lemma 4. If (ug,u1,...,u,) 18 a terminal node giving Pisot number whose
minimal polynomial P(X) € An, then u; = £N (mod N?) for0<j<n—1.

Proof of Lemma 4. We have
Dn(X) = —P(X) = =X" +di X" 1+ - 4 dp_1 X + dn,

En(X) — _ann -— dn_an_l — e e — le 4 1’
Dn(X -
(1) Engx))zuo+u1X+---+un_1X 1+...

The coefficients dy = +N, 1 < k < n, since P(X) € An. Multiplying (1) on
both sides by E,,(X) and comparing the coefficients of X* for 0 < k < n — 1,
we obtain

(2) dn——k = U — Uk-—ldl — = ’u,odk .

Finally, for 0 < k < n—1, equalities (2) modulo N? imply u; = £N (mod N?).
(]

Thus for each positive integer n we have exactly one Pisot number 7, of
degree n whose minimal polynomial is in An. It is aroot of D,,(X) = N+ NX +
-4+ NX" 1! — X™. Further, it is easy to check that (N +1) <79, < N+1.
Thus v, - N + 1, n — oo. Finally, noting that for positive integer n > 2
D,(X) is positive in the interval [1, 7, ), negative in the interval (y,, oo) and
Dp(Vn-1) =721 (N +1—7,_1) > 0, we obtain v,_1 < 7,. This completes
the proof. ]

3. Unimodular roots of reciprocal Littlewood polynomials

The proof of the following lemma can be found in [14].

Lemma 5. Suppose p(X) is a polynomial in C[X]|, m is a positive integer
and w is a compler number of modulus one. Then the number of roots of
R (X) = wX™p(X) £ p*(X) in the closed unit disk is greater than or equal to
the number of roots of S, (X) = X™p(X) in the same region.

Denote p,(X) = X + X?* 1 ... X2t o X X1 4o 4 X + 1
and ¢,(X) = X2+l — X?7 — ... — X + 1. The next lemma will be used in the
proof of Theorem 1.

Lemma 6. Polynomial q,(X) has at least 2n — 1 unimodular roots and poly-
nomial p,(X) has at least (2n — 8)/3 unimodular roots.

Proof of Lemma 6. Denote r,(X) := (X —1)-g,(X) = X?"T2-2X?"T112X -1
and s,(X) 1= (X =1)pp(X) = X2t _2X"+1 12X " 1. Substituting X = e*
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into these polynomials we obtain

rn(€') = (—2sin(n + 1)t + 2i cos(n + 1)t) (sin(n + 1)t — 2sinnt)
: 2 1 2n + 1
sn(€t) = (*2 Sin n;— t + 2icos nt t) X
. 2n+1 .t
X (Sm 7?2 t —2sin 5) :

Now counting the number of changes of sign of the function f(t) = sin{n +
1)t — 2sinnt we see that function r,(e'*) has at least 2n zeros in the interval
10, 27) . Indeed, function f(t) changes its sign in the interval

[wk +7/2 w(k+1)+ W/Q}

3

If} 7L

for k=0,1,...,2n — 1. Thus polynomial ¢,(X) has at least 2n — 1 unimodular
roots.

We can now proceed analogously to the proof of the second part of lemma.
Denote ¢(t) = sin 2%t — 2sin %. The number of zeros of ¢(t) in the interval
[0, /3] equals the number of zeros in the interval [57/3, 27], since ¢(27 — t) =
¢(t). Now counting the number of changes of sign of the function ¢(t) in the

interval (0, w/3] we see that ¢(f) has at least (n — 4)/3 zeros in this interval.

Indeed, function ¢(¢) changes its sign in the interval [Qg_rnkjlﬁ, 2”(;7:2#'”] C
(0, /3] for k= 0,1,..., [22]. Then the function ¢(t) has at least (2n — 8)/3
zeros in the interval (0, 27) . Thus the polynomial p, (X') has at least (2n—8)/3
unimodular roots. ]

Proof of Theorem 1. Mukunda [14] proved that reciprocal Littlewood polyno-
mials of odd degree at least five, except possibly those of the form ¢,(X) =
X?ntl _ X2 _ ...~ X + 1, must have at least five unimodular roots. Now
Lemma 6 for n > 3 implies that polynomial ¢, (XX) has at least five unimodular
roots.

Suppose that F(X) = Z?io a; X7 is a reciprocal Littlewood polynomial of
even degree. Erdélyi [5] proved that every reciprocal Littlewood polynomial has
at least one unimodular root. Then F'(*£1) # 0, since F(£1) is an odd integer.
Thus the number of unimodular roots of F'({X') is even. Assume that F(X)
has exactly two unimodular roots. Then F(X) has n — 1 roots inside the open
unit disc. Denote p(X) = X" + 2;101 2a;a,X7. Then p(X) € A and F(X) =
a, /2 (X"p*(X) + p(X)). Applying Lemma 5 we obtain that p*(X) must have
exactly one root in the closed unit disc. Thus p(X) must have exactly one
root ¢ outside the open unit disc and this root must be real. Then Theorem 2,
for N = 2, implies p(X) = D,(X) if ( > 1, and p(X) = (-1)"D,(-X) if
(< —1.Here D,(X)=X"-2XY""! —...~2X ~ 2. Thus reciprocal Littlewood
polynomials of even degree at least four, except possibly those of the form
po(X) = X"+ X207 o Y0P X X 4o 4 X 4+ 1, must have
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at least four unimodular roots. Applying Lemma 6 for n > 10 we obtain
that p,(X) hes at least (2n — 8)/3 > 4 unimodular roots. Finally, a simple
computation with Maple shows that for n = 7,8, 9 polynomial p,,(X) also has
at least four unimodular roots. ]
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