Seed Germination in Lettuce Affected by Light Quality and Plant Growth Regulators

상추 종자의 발아에 있어 광질 및 생장조절물질의 영향

  • Hwang, Hyeon-Jeong (Institute of Life Science & Resources, Kyung Hee University) ;
  • Lee, Jung-Myung (Institute of Life Science & Resources, Kyung Hee University) ;
  • Kim, Se-Young (Institute of Life Science & Resources, Kyung Hee University) ;
  • Choi, Geun-Won (Institute of Life Science & Resources, Kyung Hee University)
  • 황현정 (경희대학교 생명자원과학연구원) ;
  • 이정명 (경희대학교 생명자원과학연구원) ;
  • 김세영 (경희대학교 생명자원과학연구원) ;
  • 최근원 (경희대학교 생명자원과학연구원)
  • Published : 2008.03.31

Abstract

Lettuce, a typical light-induced seed germination type, exhibits different germination responses according to cultivars, light quality, and plant growth regulator (PGR) treatments. Germination rates in most tested cultivars were over 85% under both white and red light, and were slightly decreased by blue light. Although photo-inhibition in germination was observed from most cultivars by far-red light, 'Cheongguangcheongchima', 'Okdol', and 'Manchudaecheongchima' could be classified as photo-insensitive lettuce cultivars by exhibiting the germination rates as 78,63, and 48% under for-red light, respectively. 6-Benzylamino purine (BAP) and kinetin promoted seed germination and normal seedling production under far-red light, but ethephon did not show any positive effects. Cytokinins such as BAP, kinetin, thidiazuron (TDZ), and zeatin overcame photo-inhibition of seed germination even the concentration of below $50\;mg{\cdot}L^{-1}$. However, auxins such as IBA, 2,4-D, and NAA failed to overcome the far-red light-induced photo-inhibition.

상추는 전형적인 광발아 종자로서 품종별, 광질 및 생장조절물질 등의 영향을 크게 받는다. 대부분의 품종은 백색광과 적색광 하에서는 85% 이상의 발아율을 보였으나, 청색광에서는 발아세가 저하되었으며, 초적색광에서는 거의 모든 품종에서 발아가 되지 않아 광에 의한 발아억제효과가 인정되었다. 'Cheongguangcheongchima'는 초적색광 하에서도 78%, 'Okdol'은 63%, 'Manchudaecheongchima'도 48% 이상의 발아율을 나타내어 이들 품종은 광에 둔감한 품종으로 분류되었다. 초적색광의 발아 불량조건 하에서 BAP와 kinetin은 종자발아 및 정상유묘출현율을 촉진시킨 반면, ethephon은 효과적이지 못하였다. BAP, kinetin, TDZ, zeatin과 같은 cytokinin류는 $50mg{\cdot}L^{-1}$ 이하로 처리하여 초적색광에 의한 발아억제효과가 상쇄되었으나, IBA, 2,4-D, NAA의 auxin류는 별다른 극복효과를 나타내지 않았다.

Keywords

References

  1. Abeles, EB. 1986. Role of ethylene in Lactuca sativa cv. Grand Rapids seed germination. Plant Physiol. 81(3):780-787 https://doi.org/10.1104/pp.81.3.780
  2. Abeles, F.B. and J. Lonski. 1969. Stimulation of lettuce seed germination by ethylene. Plant Physiol. 44(2):277-280 https://doi.org/10.1104/pp.44.2.277
  3. Beweley, J.D. and M. Black. 1994. Seed physiology of development and germination. Plenum Press, N.Y
  4. Black, M., J.D. Beweley, and D. Fountain. 1974. Lettuce seed germination and cytokinins: their entry and formation. Planta 117(2):145-152 https://doi.org/10.1007/BF00390796
  5. Borthwick, H.A., S.B. Hendricks, E.H. Toole, and Y.K. Toole. 1954. Action of light on lettuce seed germination. Bot. Gaz. 115(3):205-225 https://doi.org/10.1086/335817
  6. Cantliffe, D.J., Y. Sung, and WM. Nascimento. 2000. Lettuce seed germination. Hort. Rev. 24:229-275
  7. Carpita, N.C. and M.W Nabors. 1976. Effects of 35 heat treatments on photosensitive 'Grand Rapids' lettuce seed germination. Plant Physiol. 57(4):612-616 https://doi.org/10.1104/pp.57.4.612
  8. Choi, B.H., B.H. Hong, GH. Kang, J.G Kim, S.H. Kim, and T.G Min. 2003. Seed Science. Hyang-Mun Press, Seoul, Korea
  9. Damania, A.B. 1986. Inhibition of seed germination in lettuce at high temperature. Seed Res. 14(2): 177-184
  10. Dunlap, J.R.M. and P.W Morgan. 1977. Reversal of induced dormancy in lettuce by ethylene, kinetin, and gibberellic acid. Plant Physiol. 60(2):222-224 https://doi.org/10.1104/pp.60.2.222
  11. Gonai, T., S. Kawahara, M. Tougou, S. Satoh, T. Hashiba, N. Hirai, H. Kawaide, Y. Karniya, and T. Yoshioka. 2004. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J. Exp. Bot. 55:111-118 https://doi.org/10.1093/jxb/erh023
  12. Han, D.H. 2002. Evaluation of major characteristics in cultivar groups of lettuce (Lactuca sativa). M.S. thesis, Kyung Hee Univ., Korea
  13. Hartman, H.T., D.E. Kester, F.T. Davis, Jr, and RL. Geneve. 1997. Plant Propagation: Principles and Practices. 5th ed, Prentice Hall, Upper Saddle River, N.J. USA.
  14. Herrera-Teigeiro, 1., L.F. Jimenez-Garcia, and J.M. Vazquez-Ramos. 1999. Benzyladenine promotes early activation of p34 (cdc2)-like kinase(s) during maize germination. Seed Sci. Res. 9:55-62
  15. Hopkins, w.G. 1999. Introduction to plant physiology. John Wiley & Sons, Inc., N.Y. USA.
  16. Kendrick, RE., and GH.M. Kronenberg. 1994. Photomorphogenesis in plants. Kluwer Academic, Dordrecht, Netherlands
  17. Khan, A.A. 1968. Inhibition of gibberellic acidinduced germination by abscisic acid and reversal by cytokinins. Plant Physiol. 43(9):1463-1465 https://doi.org/10.1104/pp.43.9.1463
  18. Khan, A.A. 1977. The physiology and biochemistry seed dormancy and germination. ElsevierlNorth-Holland Inc., N.Y. USA.
  19. Khan, A.A. and J. Prusinski. 1989. Kinetin enhanced l-arninocyclopropane-l-carboxylic acid utilization during alleviation of high temperature stress in lettuce seeds. Plant Physiol. 91(2):733-737 https://doi.org/10.1104/pp.91.2.733
  20. Khan, A.A. and Xl.. Huang. 1988. Synergistic enhancement of ethylene production and germination with kinetin and l-aminocyclopropane-l-carboxylic acid in lettuce seeds exposed to salinity stress. Plant Physiol. 87(4):847-852 https://doi.org/10.1104/pp.87.4.847
  21. Kozarewa,I., D.J. Cantliffe, R.T. Nagata, and P.J. Stof- fella. 2006. High maturation temperature of lettuce seeds during development increased ethylene production and germination at elevated temperatures. J. Amer. Soc. Hort. Sci. 131:564-570
  22. Lin, C. 2002. Blue light receptors and signal transduction. Plant Cell 2002:207-225. (Suppl.)
  23. Macisaac, S.A., Y.K. Sawhney, and Y. Pohorecky. 1996. Protein change associated with auxin-induced inhibition of lateral root initiation in lettuce (Lactuca sativa) roots. J. Exp. Bot. 41(8):1039-1044 https://doi.org/10.1093/jxb/41.8.1039
  24. Robertson, J., J.R. Hilman, and A.M.M. Berrie. 1976. The involvement of indole acetic acid in the thermodormancy of lettuce fruits, Lactuca sativa cv. Grand Rapids. Planta 131(3):309-313 https://doi.org/10.1007/BF00385432
  25. Roth-Bejerano, N., N.J.A. Sedee, R.M. Meulen, and M. Wang. 1999. The role of abscisic acid in germination of light-sensitive and light-insensitive lettuce seeds. Seed Sci. Res. 9:129-134
  26. Speer, H.L. 1974. Some aspects of the function of the endosperm during the germination of lettuce seeds. Can. J. Bot. 52:1117-1121 https://doi.org/10.1139/b74-141
  27. Suzuki, Y., Y. Soejima, and T. Matsui. 1980. Influence of after-ripening on phytochrome control of seed germination in two varieties of lettuce (Lactuca sativa L.). Plant Physiol. 66(6):1200-1201 https://doi.org/10.1104/pp.66.6.1200
  28. Takeba, G. 1983. Rapid decrease in the glutamine synthetase activity during imbibition of thermodormant New York lettuce seeds. Plant Cell Physiol. 24(8): 1469-1476 https://doi.org/10.1093/oxfordjournals.pcp.a076669