Effect of Sodium Selenate Supplied Condition by Fertigation on the Growth and Content of Minerals, Ascorbic acid, Nitrate, and Selenium of Some Western Vegetables

Sodium selenate의 토양관주 처리방법에 따른 서양채소의 생육과 무기성분, ascorbic acid, nitrate 및 셀레늄 함량에 미치는 영향

  • Lee, Sung-Jin (HoengSeong-Gun Agricultural Technology and Extension Center) ;
  • Kang, Ho-Min (Department of Horticulture, Kangwon National University) ;
  • Kim, Il-Seop (Department of Horticulture, Kangwon National University)
  • Published : 2008.03.31

Abstract

This study was conducted to investigate the proper supplied conditions of sodium selenate supplied by fertigation to improve functionality of major western vegetables; beet, broccoli, cabbage lettuce, celery, and parsley in highland. In this work, the growth and content of minerals, ascorbic acid, nitrate, and selenium were measured in western vegetables that treated sodium selenate by different concentration, treatment time and treatment frequency. While there was not different in early growth of some western vegetables among different concentration of sodium selenate; 1,2, 5 and $20\;mg{\cdot}L^{-1}$, at 20 days after treatment, the fresh weight was reduced 33% at cabbage lettuce,47% at broccoli, and 74% at parsley compared control in $5\;mg{\cdot}L^{-1}$ treatment. But the fresh weight of beet and celery reduced just 20% and 15% compared control in even $20\;mg{\cdot}L^{-1}$. The ascorbic acid of cabbage lettuce, celery, and beet increased as sodium selenate concentration increased, so that of cabbage lettuce showed 1.2 times compared control in $20\;mg{\cdot}L^{-1}$ treatment and also that of beet and celery increased 10%. But the ascorbic acid of broccoli and parsley was not influenced by treated sodium selenate. As the concentration of sodium selenate increased, the nitrate contents decreased regardless of crops compared control. This reduced effect of nitrate was highest in cabbage lettuce, followed by beet and celery. The mineral contents, such as K, Ca, and Mg, decreased in all crops, as the concentration of sodium selenate increased. The potassium content showed an obvious negative correlationship with the concentrations of sodium selenate regardless of crops, but the magnesium and calcium content did not show significant difference between treatments. The selenium content increased in proportion as increasing sodium selenate concentrations. The broccoli, celery and parsley treated $20\;mg{\cdot}L^{-1}$ sodium selenate showed 24.4 times, 76.4 times, and 560 times higher than control, respectively. When the sodium selenate supplied to some western vegetables in different growth stage, the selenium content increased 1.3 times and 1.4 times higher in early stage than in late stage in cabbage lettuce and broccoli, respectively. However in parsley and celery, the selenium content showed the highest in middle stage. The selenium content increased in proportion as increasing the sodium selenate treatment frequency, but in above 10 times treatment, the increased effect alleviated in parsley, celery, and cabbage lettuce. On the contrary, the selenium content of broccoli increased constantly as treatment frequency increased.

고랭지에서 재배되는 주요 양채류의 기능성 향상을 위한 적정 셀레늄처리 방법을 구명하고자, sodium selenate처리 농도, 처리시기 및 처리 횟수에 따른 작물생육과 작물체내 무기성분, ascorbic acid, nitrate 및 셀레늄 함량에 미치는 영향을 조사하였다. Sodium selenate 1, 2, 5 및 $20mg{\cdot}L^{-1}$처리구에서 공시작물 모두 초기생육은 큰 차이가 없었으나, 처리 60일 후부터 $5mg{\cdot}L^{-1}$ 이상의 고농도에서는 생육이 크게 억제되어, 무처리구에 비해 $5mg{\cdot}L^{-1}$처리구에서도 결구상추는 33%, 브로콜리는 47%, 파슬리는 74% 생체중이 감소한대 비해 비트와 셀러리는 고농도에서도 생육억제 현상이 크지 않아 $20mg{\cdot}L^{-1}$농도에서 생체중이 20%와 15% 감소하였다. sodium selenate 처리에 따른 작물체내 ascorbic acid 함량은 결구상추의 경우 셀레늄처리 농도가 높아질수록 증가하는 경향을 보여 $20mg{\cdot}L^{-1}$처리구는 무처리구에 비해 약 1.2배 높았고, 셀러리와 비트도 같은 농도에서 약 10% 정도 함량 증가를 보였으나, 브로콜리와 파슬리는 셀레늄처리에 따른 통계적 유의차는 없었다. 식물체내 nitrate함량은 무처리구에 비해 모든 작물에서 감소하였으며, 처리농도가 증가할수록 감소의 폭은 큰 경향을 나타내었다. 작물별 질산염의 함량 저하는 결구상추에서 가장 현저하였으며, 그 다음이 비트, 셀러리 순이었다. 무기성분 K, Ca, Mg의 함량은 공시작물 모두 처리농도가 높아질수록 감소하는 경향을 보였다. 성분별로는 K성분이 모든 작물에서 고도의 부(負) 상관관계를 나타냈으나, Mg와 Ca함량이 감소는 농도간의 차이에 유의성이 없었다. Sodium selenate 처리에 따른 식물체내 셀레늄함량은 처리 농도가 증가함에 따라 모든 공시작물에서 비례적으로 증가하여, 고농도인 $20mg{\cdot}L^{-1}$ 처리구에서 브로콜리는 무처리구 보다 24.4배, 셀러리는 76.4배, 파슬리는 560배의 높은 함량을 보였으며, 결구상추, 비트도 같은 경향을 보였다. 작물의 생육단계별 처리에서는 생육초기에 후기보다 결구상추는 1.3배, 브로콜리는 1.4배 높았으나, 파슬리와 셀러리는 생육중기에 처리한 것이 가장 높은 함량을 보였다. 처리 횟수별 Se 함량은 파슬리, 셀러리 및 결구상추는 처리 횟수에 비례하여 증가하다가 10회 이상이 되면 셀레늄의 축적량이 둔감해지는 경향을 나타냈으나, 브로콜리는 처리횟수가 많으면 많아질수록 셀레늄의 축적량도 지속적으로 증가하는 경향을 나타냈다.

Keywords

References

  1. Aslam, M., K.B. Harbit, and R.C. Huffaker. 1990. Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings. Plant Cell and Enviromnent 13:773-782 https://doi.org/10.1111/j.1365-3040.1990.tb01093.x
  2. Bark, P. and!.L. Goldman 1997. Antagonistic relationship between selenite and sulfate uptake in onion: Implications for production of organosulfer and organoselenium compounds in plants. J. Agri. Food Chem. 45: 1290-1294 https://doi.org/10.1021/jf960729k
  3. Burk, R.F, and O.A. Levander. 1999. Selenium, p.265-276. In: Modem Nutrition in Health and Disease Ninth Edition, eds. M. Shils, J. Olson, M. Shike, and A. C. Ross. Baltimore: Williams & Wilkins
  4. Cai, X,J., E. Block, P.C. Uden, X. Zhang, B.D. Quimby, and J.J. Sullivan. 1995. Allium chemistry: Identification of seleno-amino acids in ordinary and selenium-enriched garlic, onion, and broccoli using gas chromatography with atomic emisssion detection. J. Agr. Food Chem. 43:1754-1757 https://doi.org/10.1021/jf00055a002
  5. Foyer, C.H. and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133:21-25 https://doi.org/10.1007/BF00386001
  6. Kim, M.S. and K.w. Park. 2001. Effect of selenium on storability of basil in hydroponics. Kor. J. Hort. Sci. & Technol. 19(1): 87-91(in Korean)
  7. Lauchli, A. 1993. Selenium in plants: Uptake, functions, and enviromnental toxicity. Bot. Acta 106:455-468 https://doi.org/10.1111/j.1438-8677.1993.tb00774.x
  8. Lee, GP. 1999. The highly functional leafy vegetables and their physiological mechanism by selenium and germanium in hydroponics. Ph. D Diss., Korea University
  9. Munshi, C.B. and N.!. Mondy. 1992. Glycoalkaloid and nitrate content of potatoes as affected by method of selenium application. Bio. Trace Elem. Res. 33:121-127 https://doi.org/10.1007/BF02784000
  10. Olson, O.E., E.!. Whitehead, and A.L. Moxon. 1942, Occurrence of soluble selenium in soils its availability to plants. Soil Science 54:47-53 https://doi.org/10.1097/00010694-194207000-00004
  11. Park, K.w., J.H. Lee, and B. Geyer. 1996. Effects of selenium concentrations in nutrient solution on the growth and contents of inorganic substances of Chinese leaf vegetables. J. Kor. Soc. Hort. Sci. 37:J. Kor. Soc. Hort. Sci(in Korean)
  12. Park, K.w., Y.J. Lee, and J.C. Jeoung. 1997. Effects of selenate ionconcentration in nutrient solution on the growth and essential oil content of wormwood (Artemisia absinthium L.). J. Bio. Fac. Env. 6:264-269 (in Korean)
  13. Rautenkranz, A.A.F., L. Li, F. Machler, E. Martinoia, and J.J. Oertli. 1994. Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from varley(Hordeum vulgare L. cv. Gerbel) leaves. Plant Physiol. 106:187-193 https://doi.org/10.1104/pp.106.1.187
  14. Shibata, Y., M.C. Masatoshi, and R.J. Young 1982. Nutrition of the chichen. M.L. Scott and Associates, Itach, New York., USA.
  15. Thompson, J.N. and M.L. Scott. 1969. Role of selenium in the chick J. Nutr. 97:335-342 https://doi.org/10.1093/jn/97.3.335
  16. Trelease, S.F. and O.A. Beath. 1949. Selenium: Its geological occurrence and its biological effects in relation to botany, chemistry, agriculture, nutrition and medicine. The Champlain Printers, Burlington. VT., USA.
  17. Yun, H.K, T.C. Seo, D.K Park, KY. Choi, and Y.A. Jang. 2004. Effect of selenium and concentration on growth and quality of endive and pak-choi in deep flow culture. Kor. J. Hort. Sci. Technol. 22(2):151-155 (in Korean)
  18. Yun, HK, C.H. Zhang, T.C. Seo, and J.w. Lee. 2006. Effect of selenium application concentration and periods on growth in garlic. J. Bio-Environ. control. 15(4):346-351 (in Korean)