References
- R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992), 13-23 https://doi.org/10.1016/0024-3795(92)90038-C
- J. Ercolano, Matrix generators of Pell sequences, Fibonacci Quart. 17 (1979), no. 1, 71-77
- A. F. Horadam, Pell identities, Fibonacci Quart. 9 (1971), no. 3, 245-252, 263
- G. Y. Lee, J. S. Kim, and S. H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math. 130 (2003), no. 3, 527-534 https://doi.org/10.1016/S0166-218X(03)00331-7
- G. Y. Lee, J. S. Kim, and S. G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 40 (2002), no. 3, 203-211
- P. Peart and L. Woodson, Triple factorization of some Riordan matrices, Fibonacci Quart. 31 (1993), no. 2, 121-128
- L. W. Shapiro, S. Getu, W. J. Woan, and L. C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), no. 1-3, 229-239 https://doi.org/10.1016/0166-218X(91)90088-E
- Z. Zhizheng, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl. 250 (1997), 51-60 https://doi.org/10.1016/0024-3795(95)00452-1
- Z. Zhizheng and M. Liu, An extension of the generalized Pascal matrix and its algebraic properties, Linear Algebra Appl. 271 (1998), 169-177 https://doi.org/10.1016/S0024-3795(97)00266-8
Cited by
- TheF-Analogue of Riordan Representation of Pascal Matrices via Fibonomial Coefficients vol.2014, 2014, https://doi.org/10.1155/2014/841826
- The cyclic groups via the Pascal matrices and the generalized Pascal matrices vol.437, pp.10, 2012, https://doi.org/10.1016/j.laa.2012.06.024
- q -Riordan representation vol.525, 2017, https://doi.org/10.1016/j.laa.2017.03.018