DOI QR코드

DOI QR Code

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

  • Published : 2008.03.31

Abstract

In [4], the authors studied the Pascal matrix and the Stirling matrices of the first kind and the second kind via the Fibonacci matrix. In this paper, we consider generalizations of Pascal matrix, Fibonacci matrix and Pell matrix. And, by using Riordan method, we have factorizations of them. We, also, consider some combinatorial identities.

Keywords

References

  1. R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992), 13-23 https://doi.org/10.1016/0024-3795(92)90038-C
  2. J. Ercolano, Matrix generators of Pell sequences, Fibonacci Quart. 17 (1979), no. 1, 71-77
  3. A. F. Horadam, Pell identities, Fibonacci Quart. 9 (1971), no. 3, 245-252, 263
  4. G. Y. Lee, J. S. Kim, and S. H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math. 130 (2003), no. 3, 527-534 https://doi.org/10.1016/S0166-218X(03)00331-7
  5. G. Y. Lee, J. S. Kim, and S. G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 40 (2002), no. 3, 203-211
  6. P. Peart and L. Woodson, Triple factorization of some Riordan matrices, Fibonacci Quart. 31 (1993), no. 2, 121-128
  7. L. W. Shapiro, S. Getu, W. J. Woan, and L. C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), no. 1-3, 229-239 https://doi.org/10.1016/0166-218X(91)90088-E
  8. Z. Zhizheng, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl. 250 (1997), 51-60 https://doi.org/10.1016/0024-3795(95)00452-1
  9. Z. Zhizheng and M. Liu, An extension of the generalized Pascal matrix and its algebraic properties, Linear Algebra Appl. 271 (1998), 169-177 https://doi.org/10.1016/S0024-3795(97)00266-8

Cited by

  1. TheF-Analogue of Riordan Representation of Pascal Matrices via Fibonomial Coefficients vol.2014, 2014, https://doi.org/10.1155/2014/841826
  2. The cyclic groups via the Pascal matrices and the generalized Pascal matrices vol.437, pp.10, 2012, https://doi.org/10.1016/j.laa.2012.06.024
  3. q -Riordan representation vol.525, 2017, https://doi.org/10.1016/j.laa.2017.03.018