DOI QR코드

DOI QR Code

Difference of Physiochemical Characteristics Between Citrus Bacterial Canker Pathotypes and Identification of Korean Isolates with Repetitive Sequence PCRs

  • Lee, Yong-Hoon (Plant Pathology Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Seung-Don (Plant Pathology Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Dong-Hee (Plant Pathology Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Yu, Sang-Mi (Plant Pathology Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jung-Hee (Plant Pathology Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Heu, Sung-Gi (Plant Pathology Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Hyun, Jae-Wook (National Institute of Subtropical Agriculture) ;
  • Ra, Dong-Soo (Plant Pathology Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Park, Eun-Woo (Department of Agricultural Biotechnology and Chemistry, Seoul National University)
  • Published : 2008.12.01

Abstract

The difference of carbon source utilization and fatty acid composition between the pathotypes of Xanthomonas strains, which causing citrus bacterial canker was compared, and the physiochemical characteristics were used to analyze relationship of the strains for the first time. The pattern of several carbon sources utilization and fatty acids composition reliably discriminated the pathotypes of Xanthomonas strains. The dendrogram which was constructed by 95 carbon source utilization profiles differentiated X. axonopodis pv. citri A, $A^*$ and $A^w$ from the other pathotypes. When the dendrogram was drawn by combined analysis of carbon source utilization pattern and fatty acid composition, X. axonopodis pv. aurantifolii B, C and X. axonopodis pv. citrumelo formed a distinct cluster. The difference of carbon source utilization and fatty acid composition could be used effectively for the identification of pathotypes of citrus bacterial canker. The physiochemical characteristics strongly indicated that the strains isolated in Korea belong to X. axonopodis pv. citri A type. The cluster analysis by the band patterns of ERIC-, BOX- and REP-PCR allowed the discrimination of the pathotypes isolated from Korea. However, the rep-PCRs could not differentiate X. axonopodis pv. citri A types from $A^*$ and $A^w$ types. The overall results of metabolic profiles and rep-PCRs strongly indicated that the Korean isolates are X. axonopodis pv. citri A type.

Keywords

References

  1. Brunings, A. M. and Gabriel, D. W. 2003. Xanthomonas citri: breaking the surface. Mol. Plant Pathol. 4:141-157 https://doi.org/10.1046/j.1364-3703.2003.00163.x
  2. Cubero, J. and Graham, J. H. 2002. Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Appl. Environ. Microbiol. 68:1257-1264 https://doi.org/10.1128/AEM.68.3.1257-1264.2002
  3. Cubero, J. and Graham, J. H. 2004. The leucine-responsive regulatory protein (lrp) gene for characterization of the relationship among Xanthomonas species. Int. J. Syst. Evol. Microbiol. 54:429-437 https://doi.org/10.1099/ijs.0.02784-0
  4. Egel, D. S., Graham, J. H. and Stall, R. E. 1991. Genomic relatedness of Xanthomonas campestris strains causing diseases of citrus. Appl. Environ. Microbiol. 57:2724-2730
  5. Graham, J. H., Hartung, J. S., Stall, R. E. and Chase, A. R. 1990. Pathological, restriction-fragment length polymorphism, and fatty acid profile relationships between Xanthomonas campestris from citrus and noncitrus hosts. Phytopathology 80:829-836 https://doi.org/10.1094/Phyto-80-829
  6. Hartung, J. S. 1992. Plasmid-based hybridisation probes for detection and identification of Xanthomonas campestris pv. citri. Plant Dis. 76:889-893 https://doi.org/10.1094/PD-76-0889
  7. Louws, F. J., Fulbright, D. W., Stephens, C. T. and de Bruijn, F. J. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60:2286-2295
  8. Louws, F. J., Fulbright, D. W., Stephens, C. T. and de Bruijn, F. J. 1995. Differentiation of genomic structure by rep-PCR fingerprinting to rapidly classify Xanthomonas campestris pv. vesicatoria. Phytopathology 85:528-536 https://doi.org/10.1094/Phyto-85-528
  9. Lupski, J. R. and Weinstock, G. M. 1992. Short, interspersed repetitive DNA sequences in prokaryotic genomes. J. Bacteriol. 174:4525-4529 https://doi.org/10.1128/jb.174.14.4525-4529.1992
  10. Opgenorth, D. C., Smart, C. D., Louws, F. J., de Bruijn, F. J. and Kirkpatrick, B. C. 1996. Identification of Xanthomonas fragariae field isolates by rep-PCR genomic fingerprintings. Plant Dis. 80:868-873 https://doi.org/10.1094/PD-80-0868
  11. Pruvost, O., Hartung, J. S., Civerolo, E. L., Dubois, C. and Perrier, X. 1992. Plasmid DNA fingerprints distinguish pathotypes of Xanthomonas campestris pv. citri, the causal agent of citrus bacterial canker disease. Phytopathology 82:485-490 https://doi.org/10.1094/Phyto-82-485
  12. Rohlf, F. J. 2000. NTSYSpc: Numerical Taxonomy System, ver. 2.1. New York, Exeter Publishing
  13. Sambrook, J., Fritsch, E. F. and Maniatis, T. (Eds.). 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. New York, Cold Spring Harbor Laboratory
  14. Schaad, N. W., Postnikova, E., Lacy, G., Sechler, A. J., Agarkova, I., Stromberg, P., Strombuer, V. and Vidaver, A. 2005. Reclassification of Xanthomonas campestris pv. citri (ex Hasse, 1915) 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel, 1989) nov. nom. rev. comb. nov., and X. alfalfae subsp. citrumelo (ex Riker Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris malvacearum (ex Smith 1901) Dye 1978 as X. smithii subsp. smithii comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1935) Dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al., 1935) nov. nom. rev.; and ''var. fuscans" of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Syst. Appl. Microbiol. 28:494-518 https://doi.org/10.1016/j.syapm.2005.03.017
  15. Shiotani, H., Ozaki, K. and Tsuyumu, S. 2000. Pathogenic interactions between Xanthomonas axonopodis pv. citri and cultivars of pummelo (Citrus grandis). Phytopathology 90:1383-1389 https://doi.org/10.1094/PHYTO.2000.90.12.1383
  16. Stall, R. E. and Civerolo, E. L. 1993. Xanthomonas campestris pv. citri: cause of citrus canker. In Swings, J.G. and Civerolo, E.L. (Eds.), Xanthomona. London: Chapman and Hall. pp. 48-51
  17. Trindade, L. C., Lima, M. F. and Ferreira, M. A. S. V. 2005. Molecular characterization of Brazilian strains of Xanthomonas campestris pv. viticola by rep-PCR fingerprinting. Fitopatol. Bras. 30:46-54 https://doi.org/10.1590/S0100-41582005000100008
  18. Versalovic, J., Koeuth, T. and Lupski, J. R. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19:6823-6831 https://doi.org/10.1093/nar/19.24.6823
  19. Verniere, C., Hartung, J. S., Pruvost, O. P., Civerolo, E. L., Alvarez, A. M., Maestri, P. and Luisetti, J. 1998. Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. Eur. J. Plant Pathol. 104:477-487 https://doi.org/10.1023/A:1008676508688

Cited by

  1. Stenotrophomonas panacihumi sp. nov., isolated from soil of a ginseng field vol.48, pp.1, 2010, https://doi.org/10.1007/s12275-010-0006-0
  2. Genetic Diversity Among Xanthomonas Citri Subsp. Citri Strains in Iran vol.52, pp.1, 2012, https://doi.org/10.2478/v10045-012-0001-z