DOI QR코드

DOI QR Code

Purification and Phytotoxicity of Apicidins Produced by the Fusarium semitectum KCTC16676

  • Jin, Jianming (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Baek, Seung-Ryel (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Lee, Kyung-Rim (Department of Biology, University of Incheon) ;
  • Lee, Jungkwan (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Yun, Sung-Hwan (Department of Medical Biotechnology, Soonchunghyang University) ;
  • Kang, Seog-Chan (Department of Plant Pathology, The Pennsylvania State University) ;
  • Lee, Yin-Won (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2008.12.01

Abstract

Apicidin is a cyclic tetrapeptide produced by some Fusarium species and is known to inhibit Apicomplexan histone deacetylase. The goals of this study were to determine species identity of Fusarium isolate KCTC16676, an apicidin producer, to improve a method for apicidin extraction, and to test phytotoxicity of apicidin and its analogs. We compared sequences of the translation elongation factor 1-alpha (TEF) gene in KCTC16676 with those from isolates representing diverse Fusarium species, which showed that KCTC16676 belongs to the F. semitectum-F. equiseti species complex. To enhance apicidin production, after culturing isolate KCTC16676 on a wheat medium for 3 weeks at $25^{\circ}C$, the culture was extracted with chloroform. Apicidins were purified through a reverse phase $C_{18}$ silica gel column, resulting in 5 g of apicidin, 200 mg of apicidin A, and 300 mg of apicidin $D_2$ from 4 kg of wheat cultures; this represents a significant yield improvement from a previous method, offers more materials to study the modes of its action, and facilitates the elucidation of the apicidin biosynthesis pathway. Apicidin and apicidin $D_2$ showed phytotoxicity on both seedlings and 2-week-old plants of diverse species, and weeds were more sensitive to apicidins than vegetables

Keywords

References

  1. Abbas, H. K., Gronwald, J. W., Plaisance, K. L., Paul, R. N. and Lee, Y.-W. 2001. Histone deacetylase activity and phytotoxic effects following exposure of duckweed (Lemna pausicostata L.) to apicidin and HC-toxin. Phytopathology 91:1141-1148 https://doi.org/10.1094/PHYTO.2001.91.12.1141
  2. Darkin-Rattray, S. J., Gurnett, A. M., Myers, R. W., Dulski, P. M., Crumley, T. M., Alloco, J. J., Cannova, C., Meinke, P. T., Colletti, S. L., Bednarek, M. A., Sing, S. B., Goetz, M. A., Dombrowski, A. W., Plishgook, J. D. and Schmatz, D. M. 1996. Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. Sci. USA 93:13143-13147 https://doi.org/10.1073/pnas.93.23.13143
  3. Desjardines, A. E. 2006. Fusarium Mycotoxins: Chemistry, Genetics, and Biology. APS Press, St. Paul, MN, USA
  4. Geiser, D., Jimenez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T., Zhang, N., Kuldau, G. and O'Donnell, K. 2004. FUSARIUM-ID v.1.0: a DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110:473-479 https://doi.org/10.1023/B:EJPP.0000032386.75915.a0
  5. Gerlach, W. and Nirenberg, H. I. 1982. The genus Fusarium - a pictorial atlas. Mitt. Biol. Bundes. Land- Forst. (Berlin - Dahlem) 209:1-406
  6. Hirota, A., Suzuki, A., Aizawa, K. and Tamura, S. 1973. Structure of Cyl-2, a novel cyclopeptide from Cylindrocladium scoparium. Agric. Biol. Chem. 37:955-956 https://doi.org/10.1271/bbb1961.37.955
  7. Hong, J., Ishihara, K., Yamaki, K., Hiraizumi, K., Ohno, T., Ahn, J. W., Zee, O. and Ohuchi, K. 2003. Apicidin, a histone deacetylase inhibitor, induces differentiation of HL-60 cells. Cancer Lett. 189:197-206 https://doi.org/10.1016/S0304-3835(02)00500-1
  8. Kawai, M., Jasensky, R. D. and Rich, D. H. 1983. Conformational analysis by NMR spectrometry of the highly substituted cyclic tetrapeptides, chlamydocin and Ala-chlamydocin. Evidence for a unique amide bond sequence in dimethyl-d sulfoxidy. J. Am. Chem. Soc. 105:4456-4462 https://doi.org/10.1021/ja00351a052
  9. Kim, Y.-T., Lee, Y.-R., Jin, J., Han, K.-H., Kim, H., Kim, J.-C., Lee, T., Yun, S.-H and Lee, Y.-W. 2005. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol. Microbiol. 58:1102-1113 https://doi.org/10.1111/j.1365-2958.2005.04884.x
  10. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5:150-163 https://doi.org/10.1093/bib/5.2.150
  11. Lee, T., Oh, D-W., Kim, H.-S., Lee, J., Kim, Y.-H., Yun, S.-H. and Lee, Y.-W. 2001. Identification of deoxynivalenol- and nivalenol- producing chemotypes of Gibberella zeae by using PCR. Appl. Environ. Microbiol. 67:2966-2972 https://doi.org/10.1128/AEM.67.7.2966-2972.2001
  12. Leslie, J. F. 2001. Population genetics level problems in the Gibberella fujikuroi species complex. Pages 113-121 in: Fusarium: Paul E. Nelson Memorial Symposium. Summerell, B. A., Leslie, J. F., Backhouse, D., Bryden, W. L. and Burgess, L. W. eds. American Phytopathological Society, St. Paul, MN
  13. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, USA
  14. Liesch, J. M., Sweeley, C. C., Staffeld, G. D., Anderson, M. S., Weber, D. J. and Scheffer, R. P. 1982. Structure of HC-toxin, a cyclic tetrapeptide from Helminthosporium carbonum. Tetrahedron 38:45-48 https://doi.org/10.1016/0040-4020(82)85043-6
  15. Nelson, P. E., Toussoun, T. A. and Marasas, W. F. O. 1983. Fusarium species: An illustrated manual for identification. Pennsylvania State University, University Park
  16. Nirenberg, H. I. and O'Donnell, K. 1998. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 94:434-458
  17. O'Donnell, K., Kistler, H. C., Tacke, B. K. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 95:2044-2049 https://doi.org/10.1073/pnas.95.5.2044
  18. Park, J.-S., Lee, K.-R., Kim, J.-C., Lim, S.-H., Seo, J.-A. and Lee, Y.-W. 1999. A hemorrhagic factor (apicidin) produced by toxic Fusarium isolates from soybean seeds. Appl. Environ. Microbiol. 65:126-130
  19. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425
  20. Singh, S. B., Zink, D. L., Liesch, J. M., Mosley, R. T., Dombrowski, A. W., Bills, G. F., Darkin-Rattray, S. J., Schmatz, D. M. and Goetz, M. A. 2002. Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal alpha-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J. Org. Chem. 67:815-825 https://doi.org/10.1021/jo016088w
  21. Singh, S. B., Zink, D. L., Polishook, J. D., Dombrowski, A. W., Darkin-Rattray, S. J., Schmatz, D. M. and Goetz, M. A. 1996. Apicidins: Novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett. 37:8077-8080 https://doi.org/10.1016/0040-4039(96)01844-8
  22. Summerell, B. A., Salleh, B. and Leslie, J. F. 2003. A utilitarian approach to Fusarium identification. Plant Dis. 87:117-128 https://doi.org/10.1094/PDIS.2003.87.2.117
  23. Takayama, S., Lsogai, A., Nakata, M., Suzuki, H. and Susuki, A. 1984. Structure of Cyl-1, a novel cyclic tetrapetide from Cylindrocladium scoparium. Agric. Biol. Chem. 48:839-842 https://doi.org/10.1271/bbb1961.48.839
  24. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680 https://doi.org/10.1093/nar/22.22.4673
  25. Ueda, T., Takai, N., Nishida, M., Nasu, K. and Narahara, H. 2007. Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells. Int. J. Mol. Med. 19:301-308

Cited by

  1. Structure Elucidation and Antimalarial Activity of Apicidin F: An Apicidin-like Compound Produced byFusarium fujikuroi vol.76, pp.11, 2013, https://doi.org/10.1021/np4006053
  2. An Endophytic Sanguinarine-Producing Fungus from Macleaya cordata, Fusarium proliferatum BLH51 vol.68, pp.3, 2014, https://doi.org/10.1007/s00284-013-0482-7
  3. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum vol.38, pp.2, 2014, https://doi.org/10.1016/j.jgr.2013.11.016
  4. Functional characterization and manipulation of the apicidin biosynthetic pathway inFusarium semitectum vol.76, pp.2, 2010, https://doi.org/10.1111/j.1365-2958.2010.07109.x
  5. Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium vol.155, pp.3, 2012, https://doi.org/10.1016/j.ijfoodmicro.2012.01.018
  6. Structural Diversity and Biological Activities of Fungal Cyclic Peptides, Excluding Cyclodipeptides vol.22, pp.12, 2017, https://doi.org/10.3390/molecules22122069