DOI QR코드

DOI QR Code

Simultaneous Removal of H2S, NH3 and Toluene in a Biofilter Packed with Zeocarbon Carrier

  • Published : 2008.01.31

Abstract

Simultaneous removal of $NH_3,\;H_2S$ and toluene in a contaminated air stream was investigated over 185 days in a biofilter packed with Zeocarbon granule as microbial support. In this study, multi-microorganisms including Nitrosomonas and Nitrobacter for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal, and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) was 40-120 seconds and the feed (inlet) concentrations of $NH_3,\;H_2S$ and toluene were 0.02-0.11, 0.05-0.23 and 0.15-0.21 ppmv, respectively. The observed removal efficiency was 85%-99% for $NH_3$, 100% for $H_2S$, and 20-90% for toluene, respectively. The maximum elimination capacities were 9.3, 20.6 and $17g/m^3/hr\;for\;NH_3,\;H_2S$ and toluene, respectively. The results of kinetic model analysis showed that there were no particular evidences of interactions or inhibitions among the microorganisms, and that the three bio degradation reactions took place independently within a finite area of biofilm developed on the surface of the Zeocarbon carrier.

Keywords

References

  1. Lim K. H., 2005, The treatment of waste-air containing mixed solvent using a biofilter 2. Treatment of waster-air containing ethanol toluene in a biofilter, Korean J. Chem. Eng., 22, 228-233 https://doi.org/10.1007/BF02701489
  2. Lim K. H., Park S. W., 2004, The treatment of waste-air containing mixed solvent using a biofilter 1. Transient behavior of biofilter to treat waste-air containing ethanol, Korean J. Chem. Eng., 21, 1161-1167 https://doi.org/10.1007/BF02719488
  3. Malhautier L., Gracian C., Roux J., Fanlo J., Cloirec P. L., 2003, Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture, Chemosphere, 50, 145-153 https://doi.org/10.1016/S0045-6535(02)00395-8
  4. Kim H. S., 2002, Biofiltration for Removal of Odor Gases, Ph.D. Dissertation, Pohang University of Science and Technology, Pohang, Korea
  5. Liu Y., Xie Q., Sun Y., Chen J., Xue D., Chung J. S., 2002, Simultaneous removal of ethyl acetate and toluene in air stream using compost-based biofilters, J. Hazard. Mater., 95, 199-213 https://doi.org/10.1016/S0304-3894(02)00139-5
  6. Chung Y., Huang C., Tseng C., 2001, Biological elimination of H2S and NH3 from waste gases by biofilter packed with immobilized heterotrophic bacteria, Chemosphere, 43, 1043-1050 https://doi.org/10.1016/S0045-6535(00)00211-3
  7. Kim S. H., Oh K. J., Moon J. H., Kim D., 2000, Simultaneous removal of $H_2S$ and $NH_3$ using Thiobacillus sp. IW in a three-phase fluidized-bed bioreactor, J. Micorbiol. Biotechnol., 10, 419-422
  8. Park S. J., Cho K. S., Hirai M., Shoda M., 1993, Removability of malodorous Gases from a night soil treatment by a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44, J. Ferment. Bioeng., 76, 55-59 https://doi.org/10.1016/0922-338X(93)90053-B
  9. Oyarzun P., Arancibia F., Canales C., Aroca G. E., 2003, Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus, Process Biochem., 39, 165-170 https://doi.org/10.1016/S0032-9592(03)00050-5
  10. Shojaosadati S. A., Elyasi S., 1999, Removal of hydrogen sulfide by the compost biofilter with sludge of leather industry, Resour. Conserv. Recycl., 27, 139-144 https://doi.org/10.1016/S0921-3449(98)00093-7
  11. Busca G., Pistarino C., 2003, Abatement of ammonia and amines from waste gases: A summary, J. Loss Prevent Proc., 16, 157-163 https://doi.org/10.1016/S0950-4230(02)00093-1
  12. Korean Ministry of Environment, 2007, Permissible air pollutant emission standards, Korean Ministry of Environment Printing Office: Seoul, Republic of Korea
  13. Zilli M., Palazzi E., Sene L., Converti A., Borghi, M. D., 2003, Toluene and styrene removal from air in biofilter, Process Biochem., 37, 423-429 https://doi.org/10.1016/S0032-9592(01)00228-X
  14. Delhomenie M., Bibeau L., Gendron J., Brzezinski R., Heitz M. A., 2003, Study of clogging in a biofilter treating toluene vapors, Chem. Eng. J., 94, 211-222 https://doi.org/10.1016/S1385-8947(03)00052-4
  15. Acuna M. E., Villanueva C., Cardenas B., Christen P., Revah S., 2002, The effect of nutrient concentration on biofilm formation on peat and gas phase toluene biodegradation under biofiltration conditions, Process Biochem., 38, 7-13 https://doi.org/10.1016/S0032-9592(02)00039-0
  16. Elias A., Barona A., Arreguy A., Rios J., Aranguiz I., Penas J., 2002, Evaluation of a packing material for the biodegradation of H2S and product analysis, Process Biochem., 37, 813-836 https://doi.org/10.1016/S0032-9592(01)00287-4
  17. Shinabe K., Oketani S., Ochi T., Kanchanatawee S., Matsumura M., 2002, Characteristics of hydrogen sulfide removal in a carrier-packed biological deodorization system, Biochem. Eng. J., 5, 209-217 https://doi.org/10.1016/S1369-703X(00)00061-9
  18. Yoon I. K., Kim C. N., Park C. H., 2002, Optimum operating conditions for the removal of volatile organic compounds in a compost-packed biofilter, Korean J. Chem. Eng., 19, 954-959 https://doi.org/10.1007/BF02707217
  19. Hirai M., Kamatomo M., Yani M., Shoda M., 2001, Comparison of biological H2S removal characteristics among four inorganic packing materials, J. Biosci. Bioeng., 91, 396-402 https://doi.org/10.1263/jbb.91.396
  20. Cho K., Ryu H. W., Lee N. Y., 2000, Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans, J. Biosci. Bioeng., 90, 25-31 https://doi.org/10.1016/S1389-1723(00)80029-8
  21. Chung Y., Huang C., Tsen, C., Pan J. R., 2000, Biotreatment of H2S- and NH3-containing waste gases by co-immobilized cells biofilter, Chemosphere, 41, 329-336 https://doi.org/10.1016/S0045-6535(99)00490-7
  22. Cox H. H. J., Deshusses M. A., 2002, Co-treatment of H2S and toluene in a biotrickling filter, Chem. Eng. J., 87, 101-110 https://doi.org/10.1016/S1385-8947(01)00222-4
  23. Row R., Toff R., Waide J., 1977, Microtechnique for most-probable-number analysis, Appl. Environ. Microbiol., 33, 675-680
  24. Schmidt W. L., Belser L. W., 1994, Autotrophic nitrifying bacteria, p. 159-197. In: Weaver R. W., Angle S., Bottomley P., Bezdiecek D., Smith S., Tabatabai A., Wollum A., Mickelson S. H., Bigham J. M. (ed), Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (Soil Science Society of America Book, No 5), 2nd ed., Soil Science Society of America, Madison, WI
  25. Edwards V. H., 1970, The influence of high substrate concentrations on microbial kinetics, Biotechnol. Bioeng., 7, 679-712
  26. Zarook S. M., Shaikh A. A., Ansar Z., Baltzis B. C., 1997, Biofiltration of volatile organic compound (VOC) mixtures under transient conditions, Chem. Eng. Sci., 52, 4135-4142 https://doi.org/10.1016/S0009-2509(97)00256-X
  27. Park B. G., Chung J. S., 2006, Biokinetics on simultaneous biofiltration of H2S, NH3 and toluene in waste air, Korean J. Chem. Eng., 23(3), 428-434 https://doi.org/10.1007/BF02706745
  28. Kim H. S., Xie Q., Kim Y. J., Chung J. S., 2002a, Biofiltration of ammonia gas with sponge cube coated with mixtures of activated carbon and zeolite, Environ. Technol., 23, 839-847 https://doi.org/10.1080/09593332308618355
  29. Kim H. S., Kim Y. J., Chung J. S., Xie Q., 2002b, Long-term operation of a biofilter for simultaneous removal of hydrogen sulfide and ammonia, J. Air Waste Manage. Assoc., 52, 1389-1398 https://doi.org/10.1080/10473289.2002.10470871
  30. Kang Y. T., Nagano T., Kashiwagi T., 2002, Mass transfer correlation of NH3-H2O bubble absorption, Int. J. Refrig. 25, 878-886 https://doi.org/10.1016/S0140-7007(01)00096-2
  31. Cesario M. T., Beverloo W. A., Tramper J., Beefink H. H., 1997, Enhancement of gas-liquid mass transfer rate of apolar pollutants in the biological waste gas treatment by a dispersed organic solvent, Enzyme Microb. Technol., 21, 578-588 https://doi.org/10.1016/S0141-0229(97)00069-0
  32. Terasaka K., Oka J., Tsuge H., 2002, Ammonia absorption from a bubble expanding at a submerged orifice into water, Chem. Eng. Sci., 57, 3757-3765 https://doi.org/10.1016/S0009-2509(02)00308-1
  33. Bailey J. E., Ollis D. F., 1986, Biochemical Engineering Fundamentals, 2nd. ed., McGraw-Hill, Inc., 928pp