참고문헌
- Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480. https://doi.org/10.1016/j.cell.2006.10.018
- Du, S. J., Purcell, S. M., Christian, J. L., McGrew, L. L. and Moon, R. T. (1995) Identification of distinct classes and functional domains of Wnts through expression of wildtype and chimeric proteins in Xenopus embryos. Mol. Cell. Biol. 15, 2625-2634. https://doi.org/10.1128/MCB.15.5.2625
- Wong, G. T., Gavin, B. J. and McMahon, A. P. (1994) Differential transformation of mammary epithelial cells by Wnt genes. Mol. Cell. Biol. 14, 6278-6286. https://doi.org/10.1128/MCB.14.9.6278
- Kawano, Y. and Kypta, R. (2003) Secreted antagonists of the Wnt signalling pathway. J. Cell. Sci. 116, 2627-2634. https://doi.org/10.1242/jcs.00623
- Willert, K. and Jones, K. A. (2006) Wnt signaling: is the party in the nucleus? Genes. Dev. 20, 1394-1404. https://doi.org/10.1101/gad.1424006
- Montcouquiol, M., Crenshaw, E. B., 3rd and Kelley, M. W. (2006) Noncanonical Wnt signaling and neural polarity. Annu. Rev. Neurosci. 29, 363-386. https://doi.org/10.1146/annurev.neuro.29.051605.112933
- DeLise, A.M., Fischer, L. and Tuan, R.S. (2000) Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage. 8, 309-334. https://doi.org/10.1053/joca.1999.0306
- de Crombrugghe, B., Lefebvre, V., Behringer, R. R., Bi, W., Murakami, S. and Huang, W. (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol. 19, 389-394. https://doi.org/10.1016/S0945-053X(00)00094-9
- Goldring, M. B., Tsuchimochi, K. and Ijiri, K. (2006) The control of chondrogenesis. J. Cell. Biochem. 97, 33-44. https://doi.org/10.1002/jcb.20652
- Chang, S. H., Oh, C. D., Yang, M. S., Kang, S. S., Lee, Y. S., Sonn, J. K. and Chun, J. S. (1998) Protein kinase C regulates chondrogenesis of mesenchymes via mitogen-activated protein kinase signaling. J. Biol. Chem. 273, 19213-19219. https://doi.org/10.1074/jbc.273.30.19213
- Yoon, Y. M., Oh, C. D., Kang, S. S. and Chun, J. S. (2000a) Protein kinase A regulates chondrogenesis of mesenchymal cells at the post-precartilage condensation stage via protein kinase C-alpha signaling. J. Bone. Miner. Res. 15, 2197-2205. https://doi.org/10.1359/jbmr.2000.15.11.2197
- Oh, C. D., Chang, S. H., Yoon, Y. M., Lee, S. J., Lee, Y. S., Kang, S. S. and Chun, J. S. (2000) Opposing role of mitogen- activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275, 5613-5619. https://doi.org/10.1074/jbc.275.8.5613
- Yoon, Y. M., Oh, C. D., Kim, D. Y., Lee, Y. S., Park, J. W., Huh, T. L., Kang, S. S. and Chun, J. S. (2000) Epidermal growth factor negatively regulates chondrogenesis of mesenchymal cells by modulating the protein kinase C-alpha, Erk-1, and p38 MAPK signaling pathways. J. Biol. Chem. 275, 12353-12359. https://doi.org/10.1074/jbc.275.16.12353
- Ikeda, T., Kawaguchi, H., Kamekura, S., Ogata, N., Mori, Y., Nakamura, K., Ikegawa, S. and Chung, U. I. (2005) Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J. Bone. Miner. Metab. 23, 337-340. https://doi.org/10.1007/s00774-005-0610-y
- Provot, S. and Schipani, E. (2005) Molecular mechanisms of endochondral bone development. Biochem. Biophys. Res. Commun. 328, 658-665. https://doi.org/10.1016/j.bbrc.2004.11.068
- Kronenberg, H. M. (2003) Developmental regulation of the growth plate. Nature 423, 332-336. https://doi.org/10.1038/nature01657
- Shum, L. and Nuckolls, G. (2002) The life cycle of chondrocytes in the developing skeleton. Arthritis Res. 4, 94-106.
- Sandell, L. J. and Aigner, T. (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 3, 107-113. https://doi.org/10.1186/ar148
- Caterson, B., Flannery, C. R., Hughes, C. E. and Little, C. B. (2000) Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol. 19, 333-344. https://doi.org/10.1016/S0945-053X(00)00078-0
- Pelletier, J. P., Martel-Pelletier, J. and Abramson, S. B. (2001) Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 44, 1237-1247. https://doi.org/10.1002/1529-0131(200106)44:6<1237::AID-ART214>3.0.CO;2-F
- Loeser, R. F. (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum. 54, 1357-1360. https://doi.org/10.1002/art.21813
- Burrage, P. S., Mix, K. S. and Brinckerhoff, C. E. (2006) Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529-543. https://doi.org/10.2741/1817
- Shlopov, B. V., Lie, W. R., Mainardi, C. L., Cole, A. A., Chubinskaya, S. and Hasty, K. A. (1997) Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum. 40, 2065-2074. https://doi.org/10.1002/art.1780401120
- Imai, K., Ohta, S., Matsumoto, T., Fujimoto, N., Sato, H., Seiki, M. and Okada, Y. (1997) Expression of membrane- type 1 matrix metalloproteinase and activation of progelatinase A in human osteoarthritic cartilage. Am. J. Pathol. 151, 245-256.
- Ohuchi, E., Imai, K., Fujii, Y., Sato, H., Seiki, M. and Okada, Y. (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446-2451. https://doi.org/10.1074/jbc.272.4.2446
- Okada, Y., Shinmei, M., Tanaka, O., Naka, K., Kimura, A., Nakanishi, I., Bayliss, M. T., Iwata, K. and Nagase, H. (1992) Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab. Invest. 66, 680-690.
- Wu, J. J., Lark, M. W., Chun, L. E. and Eyre, D. R. (1991) Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J. Biol. Chem. 266, 5625-5628.
- Brown, D. J., Bishop, P., Hamdi, H. and Kenney, M. C. (1996) Cleavage of structural components of mammalian vitreous by endogenous matrix metalloproteinase-2. Curr. Eye. Res. 15, 439-445. https://doi.org/10.3109/02713689608995835
- Mitchell, P. G., Magna, H. A., Reeves, L. M., Lopresti- Morrow, L. L., Yocum, S. A., Rosner, P. J., Geoghegan, K. F. and Hambor, J. E. (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J. Clin. Invest. 97, 761-768. https://doi.org/10.1172/JCI118475
- Hwang, S. G., Yu, S. S., Poo, H. and Chun, J. S. (2005) c-Jun/activator protein-1 mediates interleukin-1beta-induced dedifferentiation but not cyclooxygenase-2 expression in articular chondrocytes. J. Biol. Chem. 280, 29780-29787. https://doi.org/10.1074/jbc.M411793200
- Kim, S. J., Ju, J. W., Oh, C. D., Yoon, Y. M., Song, W. K., Kim, J. H., Yoo, Y. J., Bang, O. S., Kang, S. S. and Chun, J. S. (2002) ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem. 277, 1332-1339. https://doi.org/10.1074/jbc.M107231200
- Huh, Y. H., Kim, S. H., Kim, S. J. and Chun, J. S. (2003) Differentiation status-dependent regulation of cyclooxygenase- 2 expression and prostaglandin E2 production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes. J. Biol. Chem. 278, 9691-9697. https://doi.org/10.1074/jbc.M211360200
- Hwang, S. G., Ryu, J. H., Kim, I. C., Jho, E. H., Jung, H. C., Kim, K., Kim, S. J. and Chun, J. S. (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J. Biol. Chem. 279, 26597-26604. https://doi.org/10.1074/jbc.M401401200
- Yoon, Y. M., Kim, S. J., Oh, C. D., Ju, J. W., Song, W. K., Yoo, Y. J., Huh, T. L. and Chun, J. S. (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem. 277, 8412-8420. https://doi.org/10.1074/jbc.M110608200
- Kim, S. J. and Chun, J. S. (2003) Protein kinase C alpha and zeta regulate nitric oxide-induced NF-kappa B activation that mediates cyclooxygenase-2 expression and apoptosis but not dedifferentiation in articular chondrocytes. Biochem. Biophys. Res. Commun. 303, 206-211. https://doi.org/10.1016/S0006-291X(03)00305-X
- Kim, S. J., Kim, H. G., Oh, C. D., Hwang, S. G., Song, W. K., Yoo, Y. J., Kang, S. S. and Chun, J. S. (2002) p38 kinase- dependent and -independent Inhibition of protein kinase C zeta and -alpha regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J. Biol. Chem. 277, 30375-30381. https://doi.org/10.1074/jbc.M205193200
- Kim, S. J., Hwang, S. G., Shin, D. Y., Kang, S. S. and Chun, J. S. (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFkappa B-dependent transcription and stabilization by serine 15 phosphorylation. J. Biol. Chem. 277, 33501- 33508. https://doi.org/10.1074/jbc.M202862200
- Ryu, J. H., Kim, S. J., Kim, S. H., Oh, C. D., Hwang, S. G., Chun, C. H., Oh, S. H., Seong, J. K., Huh, T. L. and Chun, J. S. (2002) Regulation of the chondrocyte phenotype by beta-catenin. Development 129, 5541-5550. https://doi.org/10.1242/dev.00110
- Oh, C. D. and Chun, J. S. (2003) Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J. Biol. Chem. 278, 36563-36571. https://doi.org/10.1074/jbc.M304857200
- Kim, H. A., Lee, Y. J., Seong, S. C., Choe, K. W. and Song, Y. W. (2000) Apoptotic chondrocyte death in human osteoarthritis. J. Rheumatol. 27, 455-462.
- Blanco, F. J., Guitian, R., Vazquez-Martul, E., de Toro, F. J. and Galdo, F. (1998) Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum. 41, 284-289. https://doi.org/10.1002/1529-0131(199802)41:2<284::AID-ART12>3.0.CO;2-T
- Mansfield, K., Rajpurohit, R. and Shapiro, I. M. (1999) Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J. Cell. Physiol. 179, 276-286. https://doi.org/10.1002/(SICI)1097-4652(199906)179:3<276::AID-JCP5>3.0.CO;2-#
- Aigner, T. (2002) Apoptosis, necrosis, or whatever: how to find out what really happens? J. Pathol. 198, 1-4. https://doi.org/10.1002/path.1172
- Kuhn, K., Hashimoto, S. and Lotz, M. (1999) Cell density modulates apoptosis in human articular chondrocytes. J. Cell. Physiol. 180, 439-447. https://doi.org/10.1002/(SICI)1097-4652(199909)180:3<439::AID-JCP15>3.0.CO;2-D
- Gruber, H. E., Norton, H. J. and Hanley, E. N., Jr. (2000) Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine 25, 2153-2157. https://doi.org/10.1097/00007632-200009010-00002
- Yates, K. E., Shortkroff, S. and Reish, R. G. (2005) Wnt influence on chondrocyte differentiation and cartilage function. DNA. Cell. Biol. 24, 446-457. https://doi.org/10.1089/dna.2005.24.446
- Church, V., Nohno, T., Linker, C., Marcelle, C. and Francis- West, P. (2002) Wnt regulation of chondrocyte differentiation. J. Cell. Sci. 115, 4809-4818. https://doi.org/10.1242/jcs.00152
- Tufan, A. C., Daumer, K. M. and Tuan, R. S. (2002) Frizzled-7 and limb mesenchymal chondrogenesis: effect of misexpression and involvement of N-cadherin. Dev. Dyn. 223, 241-253. https://doi.org/10.1002/dvdy.10046
- Stott, N. S., Jiang, T. X. and Chuong, C. M. (1999) Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2. J. Cell. Physiol. 180, 314-324. https://doi.org/10.1002/(SICI)1097-4652(199909)180:3<314::AID-JCP2>3.0.CO;2-Y
- Daumer, K. M., Tufan, A. C. and Tuan, R. S. (2004) Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling. J. Cell. Biochem. 93, 526-541. https://doi.org/10.1002/jcb.20190
- Hartmann, C. and Tabin, C. J. (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104, 341-351. https://doi.org/10.1016/S0092-8674(01)00222-7
- Rudnicki, J. A. and Brown, A. M. (1997) Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev. Biol. 185, 104-118. https://doi.org/10.1006/dbio.1997.8536
- Reinhold, M. I., Kapadia, R. M., Liao, Z. and Naski, M. C. (2006) The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J. Biol. Chem. 281, 1381-1388. https://doi.org/10.1074/jbc.M504875200
- Hwang, S. G., Yu, S. S., Lee, S. W. and Chun, J. S. (2005) Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett. 579, 4837-4842. https://doi.org/10.1016/j.febslet.2005.07.067
- Yano, F., Kugimiya, F., Ohba, S., Ikeda, T., Chikuda, H., Ogasawara, T., Ogata, N., Takato, T., Nakamura, K., Kawaguchi, H. and Chung, U. I. (2005) The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem. Biophys. Res. Commun. 333, 1300-1308. https://doi.org/10.1016/j.bbrc.2005.06.041
- Yang, Y., Topol, L., Lee, H. and Wu, J. (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130, 1003-1015. https://doi.org/10.1242/dev.00324
- Hartmann, C. (2007) Skeletal development-Wnts are in control. Mol. Cells. 24, 177-184.
- Kawakami, Y., Wada, N., Nishimatsu, S. I., Ishikawa, T., Noji, S. and Nohno, T. (1999) Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev. Growth. Differ. 41, 29-40. https://doi.org/10.1046/j.1440-169x.1999.00402.x
- Enomoto-Iwamoto, M., Kitagaki, J., Koyama, E., Tamamura, Y., Wu, C., Kanatani, N., Koike, T., Okada, H., Komori, T., Yoneda, T., Church, V., Francis-west, P. H., Kurisu, K., Nohno, T., Pacifici, M. and Iwamoto, M. (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev. Biol. 251, 142-156. https://doi.org/10.1006/dbio.2002.0802
- Hartmann, C. and Tabin, C. J. (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127, 3141-3159.
- Gaur, T., Rich, L., Lengner, C. J., Hussain, S., Trevant, B., Ayers, D., Stein, J. L., Bodine, P. V., Komm, B. S., Stein, G. S. and Lian, J. B. (2006) Secreted frizzled related protein 1 regulates Wnt signaling for BMP2 induced chondrocyte differentiation. J. Cell. Physiol. 208, 87-96. https://doi.org/10.1002/jcp.20637
- Yamaguchi, T. P., Bradley, A., McMahon, A. P. and Jones, S. (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211-1223.
- Wang, L., Shao, Y. Y. and Ballock, R. T. (2007) Thyroid hormone interacts with the Wnt/beta-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes. J. Bone. Miner. Res. 22, 1988-1995. https://doi.org/10.1359/jbmr.070806
- Akiyama, H., Lyons, J. P., Mori-Akiyama, Y., Yang, X., Zhang, R., Zhang, Z., Deng, J. M., Taketo, M. M., Nakamura, T., Behringer, R. R., Mccrea, P. D. and de Crambrugghe, B. (2004) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18, 1072-1087. https://doi.org/10.1101/gad.1171104
- Dong, Y., Drissi, H., Chen, M., Chen, D., Zuscik, M. J., Schwarz, E. M. and O'Keefe, R. J. (2005) Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta. J. Cell. Biochem. 95, 1057-1068. https://doi.org/10.1002/jcb.20466
- Dong, Y. F., Soung do, Y., Schwarz, E. M., O'Keefe, R. J. and Drissi, H. (2006) Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J. Cell. Physiol. 208, 77-86. https://doi.org/10.1002/jcp.20656
- Firestein, G. S. (2003) Evolving concepts of rheumatoid arthritis. Nature 423, 356-361. https://doi.org/10.1038/nature01661
- Sen, M., Lauterbach, K., El-Gabalawy, H., Firestein, G. S., Corr, M. and Carson, D. A. (2000) Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc. Natl. Acad. Sci. U. S. A. 97, 2791-2796. https://doi.org/10.1073/pnas.050574297
- Sen, M., Chamorro, M., Reifert, J., Corr, M. and Carson, D. A. (2001) Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum. 44, 772-781. https://doi.org/10.1002/1529-0131(200104)44:4<772::AID-ANR133>3.0.CO;2-L
- Sen, M., Reifert, J., Lauterbach, K., Wolf, V., Rubin, J. S., Corr, M. and Carson, D. A. (2002) Regulation of fibronectin and metalloproteinase expression by Wnt signaling in rheumatoid arthritis synoviocytes. Arthritis Rheum. 46, 2867-2877. https://doi.org/10.1002/art.10593
- Nakamura, Y., Nawata, M. and Wakitani, S. (2005) Expression profiles and functional analyses of Wnt-related genes in human joint disorders. Am. J. Pathol. 167, 97-105. https://doi.org/10.1016/S0002-9440(10)62957-4
- Imai, K., Morikawa, M., D'Armiento, J., Matsumoto, H., Komiya, K. and Okada, Y. (2006) Differential expression of WNTs and FRPs in the synovium of rheumatoid arthritis and osteoarthritis. Biochem. Biophys. Res. Commun. 345, 1615-1620. https://doi.org/10.1016/j.bbrc.2006.05.075
- James, I. E., Kumar, S., Barnes, M. R., Gress, C. J., Hand, A. T., Dodds, R. A., Connor, J. R., Bradley, B. R., Campbell, D. A., Grabill, S. E., Williams, K., Blake, S. M., Gowen, M. and Lark, M. W. (2000) FrzB-2: a human secreted frizzled- related protein with a potential role in chondrocyte apoptosis. Osteoarthritis Cartilage 8, 452-463. https://doi.org/10.1053/joca.1999.0321
- Loughlin, J., Dowling, B., Chapman, K., Marcelline, L., Mustafa, Z., Southam, L., Ferreira, A., Ciesielski, C., Carson, D. A. and Corr, M. (2004) Functional variants within the secreted frizzled-related protein 3 gene are as sociated with hip osteoarthritis in females. Proc. Natl. Acad. Sci. U. S. A. 101, 9757-9762. https://doi.org/10.1073/pnas.0403456101
- Kim, S. J., Im, D. S., Kim, S. H., Ryu, J. H., Hwang, S. G., Seong, J. K., Chun, C. H. and Chun, J. S. (2002) Beta-catenin regulates expression of cyclooxygenase-2 in articular chondrocytes. Biochem. Biophys. Res. Commun. 296, 221- 226. https://doi.org/10.1016/S0006-291X(02)00824-0
- Dell'accio, F., De Bari, C., Eltawil, N. M., Vanhummelen, P. and Pitzalis, C. (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum. 58, 1410-1421. https://doi.org/10.1002/art.23444
- Xu, W. and Kimelman, D. (2007) Mechanistic insights from structural studies of beta-catenin and its binding partners. J. Cell. Sci. 120, 3337-3344. https://doi.org/10.1242/jcs.013771
- Hwang, S. G., Yu, S. S., Ryu, J. H., Jeon, H. B., Yoo, Y. J., Eom, S. H. and Chun, J. S. (2005) Regulation of beta-catenin signaling and maintenance of chondrocyte differentiation by ubiquitin-independent proteasomal degradation of alpha-catenin. J. Biol. Chem. 280, 12758-12765. https://doi.org/10.1074/jbc.M413367200
- Ryu, J. H. and Chun, J. S. (2006) Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. J. Biol. Chem. 281, 22039-22047. https://doi.org/10.1074/jbc.M601804200
- Huh, Y. H., Ryu, J. H. and Chun, J. S. (2007) Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J. Biol. Chem. 282, 17123-17131. https://doi.org/10.1074/jbc.M700599200
피인용 문헌
- Enhanced Chondrogenic Differentiation of Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stem Cells by GSK-3 Inhibitors vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0168059
- An update on primary hip osteoarthritis including altered Wnt and TGF- associated gene expression from the bony component of the disease vol.50, pp.12, 2011, https://doi.org/10.1093/rheumatology/ker291
- Temporal Activation of β-Catenin Signaling in the Chondrogenic Process of Mesenchymal Stem Cells Affects the Phenotype of the Cartilage Generated vol.21, pp.11, 2012, https://doi.org/10.1089/scd.2011.0376
- Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii) vol.193, 2013, https://doi.org/10.1016/j.ygcen.2013.06.021
- Stimulation of superficial zone protein accumulation by hedgehog and Wnt signaling in surface zone bovine articular chondrocytes vol.65, pp.2, 2013, https://doi.org/10.1002/art.37768
- Identification of Genes Regulated by IL-1β Using Integrative microRNA and mRNA Genomic Analysis in Human Articular Chondrocytes vol.18, pp.4, 2011, https://doi.org/10.4078/jrd.2011.18.4.264
- Signaling Pathways in Cartilage Repair vol.15, pp.5, 2014, https://doi.org/10.3390/ijms15058667
- β-catenin protein utilized by Tumour necrosis factor-α in porcine preadipocytes to suppress differentiation vol.42, pp.6, 2009, https://doi.org/10.5483/BMBRep.2009.42.6.338
- Altered Signaling in the G1 Phase Deregulates Chondrocyte Growth in a Mouse Model With Proteoglycan Undersulfation vol.115, pp.10, 2014, https://doi.org/10.1002/jcb.24844
- Wnt Inhibitory Factor 1 Deficiency Uncouples Cartilage and Bone Destruction in Tumor Necrosis Factor α-Mediated Experimental Arthritis vol.65, pp.9, 2013, https://doi.org/10.1002/art.38054
- TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells vol.9, pp.1, 2015, https://doi.org/10.1186/1754-1611-9-1
- A genome-wide transcriptomic analysis of articular cartilage during normal maturation in pigs vol.627, 2017, https://doi.org/10.1016/j.gene.2017.07.001
- Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering vol.2, pp.4, 2015, https://doi.org/10.1016/j.gendis.2015.09.003
- Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis vol.1240, pp.1, 2011, https://doi.org/10.1111/j.1749-6632.2011.06258.x
- Heterozygosity for an inactivating mutation in low-density lipoprotein-related receptor 6 (Lrp6) increases osteoarthritis severity in mice after ligament and meniscus injury vol.21, pp.10, 2013, https://doi.org/10.1016/j.joca.2013.05.019
- Fibulin-4 reduces extracellular matrix production and suppresses chondrocyte differentiation via DKK1- mediated canonical Wnt/β-catenin signaling vol.99, 2017, https://doi.org/10.1016/j.ijbiomac.2017.02.087
- The early secretory pathway in development: A tale of proteins and mRNAs vol.20, pp.7, 2009, https://doi.org/10.1016/j.semcdb.2009.03.012
- The retinal pigment epithelium of the eye regulates the development of scleral cartilage vol.347, pp.1, 2010, https://doi.org/10.1016/j.ydbio.2010.08.006
- Increased sulfatase 1 gene expression in degenerative intervertebral disc cells vol.33, pp.3, 2015, https://doi.org/10.1002/jor.22766
- Articular Cartilage Development: A Molecular Perspective vol.43, pp.2, 2012, https://doi.org/10.1016/j.ocl.2012.01.003
- Attenuation of Chondrogenic Transformation in Vascular Smooth Muscle by Dietary Quercetin in the MGP-Deficient Mouse Model vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0076210
- RNA-Seq Analysis Reveals Different Dynamics of Differentiation of Human Dermis- and Adipose-Derived Stromal Stem Cells vol.7, pp.6, 2012, https://doi.org/10.1371/journal.pone.0038833
- New findings in osteoarthritis pathogenesis: therapeutic implications vol.4, pp.1, 2013, https://doi.org/10.1177/2040622312462734
- Molecular basis of the clinical features of Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome (AARRS) and Fuhrmann syndrome vol.161, pp.9, 2013, https://doi.org/10.1002/ajmg.a.35437
- Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p vol.33, pp.11, 2015, https://doi.org/10.1002/stem.2093
- Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia vol.243, pp.7, 2014, https://doi.org/10.1002/dvdy.24131
- Epidermal Growth Factor Receptor (EGFR) Signaling Regulates Epiphyseal Cartilage Development through β-Catenin-dependent and -independent Pathways vol.288, pp.45, 2013, https://doi.org/10.1074/jbc.M113.463554
- The Chondrogenic Potential of Mesenchymal Cells and Chondrocytes from Osteoarthritic Subjects vol.2, pp.1, 2011, https://doi.org/10.1177/1947603510380899
- Analysis of the Chondrogenic Potential and Secretome of Mesenchymal Stem Cells Derived from Human Umbilical Cord Stroma vol.20, pp.7, 2011, https://doi.org/10.1089/scd.2010.0315
- Evolution of the parathyroid hormone family and skeletal formation pathways vol.170, pp.1, 2011, https://doi.org/10.1016/j.ygcen.2010.10.023
- Wnt5a plays a crucial role in determining tooth size during murine tooth development vol.345, pp.3, 2011, https://doi.org/10.1007/s00441-011-1224-4
- Interactions between SOX factors and Wnt/β-catenin signaling in development and disease 2010, https://doi.org/10.1002/dvdy.22046
- Roles of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells vol.91, pp.12, 2011, https://doi.org/10.1038/labinvest.2011.144
- Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs vol.30, pp.10, 2009, https://doi.org/10.1038/aps.2009.143
- Wnt/β-Catenin and Retinoic Acid Receptor Signaling Pathways Interact to Regulate Chondrocyte Function and Matrix Turnover vol.285, pp.1, 2010, https://doi.org/10.1074/jbc.M109.053926
- Investigating ADAMTS-mediated aggrecanolysis in mouse cartilage vol.6, pp.3, 2011, https://doi.org/10.1038/nprot.2010.179
- A novel homozygous Arg222Trp missense mutation in WNT7A in two sisters with severe Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome vol.152A, pp.11, 2010, https://doi.org/10.1002/ajmg.a.33673
- R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification vol.473, pp.1, 2016, https://doi.org/10.1016/j.bbrc.2016.03.089
- The Wnt Serpentine Receptor Frizzled-9 Regulates New Bone Formation in Fracture Healing vol.8, pp.12, 2013, https://doi.org/10.1371/journal.pone.0084232
- Amelogenin splice isoforms stimulate chondrogenic differentiation of ATDC5 cells vol.19, pp.2, 2013, https://doi.org/10.1111/j.1601-0825.2012.01967.x
- The Emerging Role of Wnt/PCP Signaling in Organ Formation vol.6, pp.1, 2009, https://doi.org/10.1089/zeb.2008.0563
- Patients with sclerosteosis and disease carriers: Human models of the effect of sclerostin on bone turnover vol.26, pp.12, 2011, https://doi.org/10.1002/jbmr.474
- Molecular hydrogen suppresses activated Wnt/β-catenin signaling vol.6, pp.1, 2016, https://doi.org/10.1038/srep31986
- Inhibition of Gsk3β in cartilage induces osteoarthritic features through activation of the canonical Wnt signaling pathway vol.19, pp.11, 2011, https://doi.org/10.1016/j.joca.2011.07.014
- Sox9 Potentiates BMP2-Induced Chondrogenic Differentiation and Inhibits BMP2-Induced Osteogenic Differentiation vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0089025
- LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation vol.451, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2014.07.125
- miR-449a Regulates the Chondrogenesis of Human Mesenchymal Stem Cells Through Direct Targeting of Lymphoid Enhancer-Binding Factor-1 vol.21, pp.18, 2012, https://doi.org/10.1089/scd.2011.0732
- Immunohistochemical expression of WNT5A and MMPs in odontogenic epithelial tumors and cysts vol.117, pp.8, 2015, https://doi.org/10.1016/j.acthis.2015.10.006
- Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8 vol.26, pp.5, 2014, https://doi.org/10.1016/j.cellsig.2014.01.021
- Mice vol.39, pp.3, 2012, https://doi.org/10.3899/jrheum.110971
- BIO allieviated compressive mechanical force-mediated mandibular cartilage pathological changes through Wnt/β-catenin signaling activation pp.07360266, 2017, https://doi.org/10.1002/jor.23748
- Methacrylamide-modified collagen hydrogel with improved anti-actin-mediated matrix contraction behavior vol.6, pp.45, 2018, https://doi.org/10.1039/C8TB02314J
- The Role of Wnt Pathway in the Pathogenesis of OA and Its Potential Therapeutic Implications in the Field of Regenerative Medicine vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/7402947
- Gene–gene interactions of the Wnt/β-catenin signaling pathway in knee osteoarthritis vol.45, pp.5, 2018, https://doi.org/10.1007/s11033-018-4260-2
- Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A vol.9, pp.1, 2018, https://doi.org/10.1186/s13287-018-1004-0
- Achilles and tail tendons of perlecan exon 3 null heparan sulphate deficient mice display surprising improvement in tendon tensile properties and altered collagen fibril organisation compared to C57BL/6 wild type mice vol.6, pp.2167-8359, 2018, https://doi.org/10.7717/peerj.5120
- Sox11-modified mesenchymal stem cells accelerate cartilage defect repair in SD rats pp.1432-0878, 2019, https://doi.org/10.1007/s00441-018-02979-4