Synthesis of Poly(styrene carbonate) and Preparation of Styrene Carbonate by Thermal Degradation

Poly(styrene carbonate)의 합성 및 열분해에 의한 styrene carbonate의 제조

  • Lee, Yoon Bae (Department of Chemical Engineering, Soonchunhyang University) ;
  • Shin, Eun Jung (Department of Chemical Engineering, Soonchunhyang University) ;
  • Yoo, Jin Yi (Department of Chemical Engineering, Soonchunhyang University)
  • 이윤배 (순천향대학교 나노화학공학과) ;
  • 신은정 (순천향대학교 나노화학공학과) ;
  • 유진이 (순천향대학교 나노화학공학과)
  • Received : 2007.10.16
  • Accepted : 2007.11.22
  • Published : 2008.02.10

Abstract

In order to decrease carbon dioxide, one of the green house gas, poly(styrene carbonate) has been synthesized from carbon dioxide and styrene oxide with zinc glutarate as a catalyst. The polymer has been identified as an alternating copolymer by spectroscopic analysis, FT-IR, $^1H$-NMR, and $^{13}C$-NMR. The number average molecular weight ($M_n$) of the polymer is $5.0{\times}10^4g/mol$ and the glass transition temperature ($T_g$) is $88^{\circ}C$ and its melting point ($T_m$) is $240^{\circ}C$. The cyclic carbonate, styrene carbonate, has been obtained by thermal degradation of the polymer via the unzipping mechanism.

온실 가스 가운데 하나인 이산화탄소를 줄이기 위한 연구의 일환으로 이산화탄소와 산화 스틸렌을 원료로 하고 zinc glutarate를 촉매로 하여 poly(styrene carbonate)를 합성하였다. 여러 가지 분광학적인(FT-IR, $^1H$-NMR, $^{13}C$-NMR, GC-MS) 분석결과 교대 공중합체임이 확인되었으며, MALDI법에 의하여 분자량($\bar{M}_n$)은 $5.0{\times}10^4$이며, 유리전이온도는 $88^{\circ}C$이고, 융융점은 $240^{\circ}C$로 밝혀졌다. 이 고분자를 열분해하면 고리형 카보네이트인 styrene carbonate가 생성되는 것도 확인하였다.

Keywords

References

  1. J. W. Park and S. M. Lee, Chemical Industry & Tech, 11, 2 (1993)
  2. S. Inoue, H. Koinuma, and T. Tsuruta, Poly Lett., 7, 287 (1969) https://doi.org/10.1002/pol.1969.110070408
  3. T. Kawaguchi, M. Nakano, K. Juni, S. Inoue, and Y. Yoshida, Chem. Pharm. Bull., 31, 1400 (1983) https://doi.org/10.1248/cpb.31.1400
  4. A-C. Albertsson, International Symposium on Biodegradable Polymers., 45 (1990)
  5. S. J. Huang, International Symposium on Biodegradable Polymers., 47 (1990)
  6. M. Dadsetan, E. M. Christenson, F. Unger, M. Ausborn, T. Kissel, A. Hiltner, and J. M. Anderson, J. Control. Release, 93, 259 (2003) https://doi.org/10.1016/j.jconrel.2003.08.010
  7. Y. B. Lee, Polymer(Korea), 19, 35 (1995)
  8. Y. T. Hwang, J. H. Jung, M. H. Ree, and H. S. Kim, Macromolecules, 36, 8210 (2003) https://doi.org/10.1021/ma034498b
  9. C. T. Cohen, C. M. Thomas, K. L. Peretti, E. B. Lobkovsky, and G. W. Coates, The Royal Society of Chemistry, 237 (2006)
  10. Y. B. Lee and J. H. Choi, J. Korean Ind. Eng. Chem., 7, 813 (1996)
  11. Y. B. Lee, S. K. Kim, and S. C. Shin, J. Korean Ind. Eng. Chem., 11, 195 (2000)
  12. Y. B. Lee, S. C. Shin, and J. S. Shin, kais, 5, 521 (2004)
  13. J. S. Kim, M. Ree, S. W. Lee, W. Oh, S. Baek, B. Lee, T. J. Shin, K. J. Kim, B. Kim, and J. Lüning, J. Catalysis, 218, 386 (2003) https://doi.org/10.1016/S0021-9517(03)00122-2
  14. U. S. Patent 6,617,467 (2003)
  15. S. D. Thorat, P. J. Phillips, V. Semenov, and A. Gakh, Applied Polymer Science, 89, 1163 (2003) https://doi.org/10.1002/app.12355