임플란트 고정체-지대주 연결부 및 지대주 디자인이 기계적 강도에 미치는 영향

Influence of Implant Fixture-Abutment Connection and Abutment Design on Mechanical Strength

  • 전미현 (부산대학교 치과대학 치과보철학교실) ;
  • 정창모 (부산대학교 치과대학 치과보철학교실) ;
  • 전영찬 (부산대학교 치과대학 치과보철학교실) ;
  • 엄태관 (오스템 임플랜트 연구소) ;
  • 윤지훈 (오스템 임플랜트 연구소)
  • Chun, Mi-Hyun (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Eom, Tae-Gwan (Osstem Implant Research Center) ;
  • Yoon, Ji-Hoon (Osstem Implant Research Center)
  • 투고 : 2008.04.18
  • 심사 : 2008.09.25
  • 발행 : 2008.09.30

초록

골유착성 임플란트 보철물에서 피로나 과하중에 의해 보철유지 나사나 지대주 나사의 파절, 보철물의 파절, 또는 고정체의 파절 등과 같은 기계적 강도와 연관된 문제점이 발생할 가능성이 높다. 임플란트 시스템의 기계적인 강도에 영향을 주는 요소에는 고정체와 나사의 직경, 재료적 특성, 연결부 디자인, 지대주 디자인 등이 있으며, 이 중 임플란트 고정체와 지대주간의 연결부 디자인은 임플란트 시스템의 기계적인 연결상태와 연결부 안정성을 결정하는 주요소이다. 대부분의 기계적 강도에 관한 연구에서처럼 단일하중에 의한 압축굽힘강도나, 단기적인 반복하중 후의 결과만을 평가하여 임플란트 시스템의 장기적인 안정성을 예측하기에는 한계가 있다. 연구 목적: 이에 본 연구에서는 external butt joint와 internal conical joint를 갖는 임플란트 시스템(오스템사)의 연결부 디자인에서 각각 다른 두 가지 지대주를 사용하여, 연결부 및 지대주 디자인이 기계적 강도에 미치는 영향을 압축굽힘강도는 물론 내구성한계를 측정하여 알아보고자 하였다. 연구 재료 및 방법: External butt joint인 US II에서는 통상적인 UCLA 지대주 형태의 Cemented abutment(BJT)와 굽힘 저항성을 증가시키기 위해 나사 두부가 지대주 상단에 위치하도록 설계된 Safe abutment(BJS)를, internal conical joint인 SS II에서는 one-piece형의 Solid abutment(CJO)와 two-piece형의 ComOcta abutment(CJT)를 지대주로 사용하였다. ISO 규정을 참고하여 단일 임플란트, 변연골 흡수, 그리고 $30^{\circ}$ 경사하중 조건에서 압축굽힘강도와 내구성한계를 측정하였고 실패 양상을 관찰한 결과 다음과 같은 결론을 얻었다. 결과 및 결론: 1. 압축굽힘강도는 BJS군(1392.0N), CJO군(1261.8N), BJT군(1153.2N), 그리고 CJT군(1110.2N) 순으로 낮아졌으며(P<.05), CJT군과 BJT군 사이에는 차이가 없었다(P>.05) 2. 내구성한계는 CJO군(600N), CJT군(453N), BJS군(360N) 그리고 BJT군(300N) 순으로 낮아졌다. 3. 압축굽힘강도는 연결부 디자인 또는 지대주 디자인에 따라 차이를 보였으며, 내구성한계에 있어서는 연결부 디자인이 더 주된 요소로 작용하였다.

Fatigue or overload can result in mechanical problems of implant components. The mechanical strength in the implant system is dependent on several factors, such as screw and fixture diameters, material, and design of the fixture-abutment connection and abutment. In these factors, the last rules the strength and stability of the fixture-abutment assembly. There have been some previous reports on the mechanical strength of the fixture-abutment assembly with the compressive bending test or short-term cyclic loading test. However, it is restrictive to predict the long-term stability of the implant system with them. The purpose of this study was to evaluate the influence of the design of the fixture-abutment connection and abutment on the mechanical strength and failure mode by conducting the endurance limit test as well as the compressive bending strength test. Tests were performed according to a specified test(ISO/FDIS 14801) in 4 fixture-abutment assemblies of the Osstem implant system: an external butt joint with Cemented abutment (group BJT), an external butt joint with Safe abutment (group BJS), an internal conical joint with Solid abutment (group CJO), and an internal conical joint with ComOcta abutment (group CJT). The following conclusions were drawn within the limitation of this study. Compressive bending strengths were decreased in order of group BJS(1392.0N), group CJO(1261.8N), group BJT(1153.2N), and group CJT(1110.2N). There were no significant differences in compressive bending strengths between group BJT and group CJT(P>.05). Endurance limits were decreased in order of group CJO(600N), group CJT(453N), group BJS(360N), and group BJT(300N). 3. Compressive bending strengths were influenced by the connection and abutment design of the implant system, however endurance limits were affected more considerably by the connection design.

키워드

참고문헌

  1. Wie H. Registration of localization, occlusion and occluding materials for failing screw joints in the Brånemark implant system. Clin Oral Impl Res 1995;6:47-53 https://doi.org/10.1034/j.1600-0501.1995.060106.x
  2. Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: The Toronto study. Part III: problems and complications encountered. J Prosthet Dent 1990;64:185-94 https://doi.org/10.1016/0022-3913(90)90177-E
  3. Morgan J, James D, Pillar M. Fractures of the fixture component of an osseointegrated implant. Int J Oral Maxillofac Implants 1993;8:409-14
  4. Balshi TJ. An Analysis and management of fractured implants: A clinical report. Int J Oral Maxillofac Implants 1996;11:660-6
  5. Goodacre CJ, Kan JYK, Rungcharassaeng K. Clinical complications of osseointegrated implants. J Prosthet Dent 1999;81:537-52 https://doi.org/10.1016/S0022-3913(99)70208-8
  6. Lekholm U, Steenberghe D, Herrmann I, Bolender C, Folmer T, Gunne J, Henry P, Higuchi K, Laney WR, Lindén U. Osseointegrated implants in the treatment of partially edentulous jaws. A prospective 5-year multicenter study. Int J Oral Maxillofac Implants 1994;9:627-35
  7. angert B, Krogh PH, Langer B, Roekel NV. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10:326-34
  8. Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, Belser UC, Lang NP. Long-term evaluation of non-submerged ITI implants. Part 1:8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Impl Res 1997;8:161-72 https://doi.org/10.1034/j.1600-0501.1997.080302.x
  9. Schwarz MS. Mechanical complications of dental implants. Clin Oral Impl Res 2000;11(Suppl.):156-8 https://doi.org/10.1034/j.1600-0501.2000.011S1156.x
  10. Rangert B, Jemt T, Jörnéus L. Forces and moments on Brånemark implants. Int J Oral Maxillofac Implants 1989;4:241-7
  11. Scott A, Hoyer BS, Clark M, Fridrich T, Wagner J, Gratton D. Dynamic fatigue properties of the dental implant-abutment interface : Joint opening in wide-diameter versus standard-diameter hex-type implants. J Prosthet Dent 2001;85:599-607 https://doi.org/10.1067/mpr.2001.115250
  12. Balfour A, O'Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent 1995;73:36-43 https://doi.org/10.1016/S0022-3913(05)80270-7
  13. Möllersten L, Lockowandt P, Lindén LÅ. Comparison of strength and failure mode of seven implant systems: An in vitro test. J Prosthet Dent 1997;78:582-91 https://doi.org/10.1016/S0022-3913(97)70009-X
  14. Koh YM, Kim KN, KimGM, Kim GH, Kim HY, Park YJ, et al. Dental materials. Seoul: Koonja Publishing Inc. 2001
  15. Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent 2002;88:604-10 https://doi.org/10.1067/mpr.2002.129384
  16. Çehreli MC, Akça K, Iplikçioğlu H, Şahin S. Dynamic fatigue resistance of implant-abutment junction in an internally notched morse-taper oral implant: influence of abutment design. Clin Oral Impl Res 15,2004;459-65 https://doi.org/10.1111/j.1600-0501.2004.01023.x
  17. Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Impl Res 1997;8:290-8 https://doi.org/10.1034/j.1600-0501.1997.080407.x
  18. Norton RN. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent 1999;81:159-66 https://doi.org/10.1016/S0022-3913(99)70243-X
  19. Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Periodont Rest Dent 1993;13:409-31
  20. Shin HM, Jeong CM, Jeon YC, Jeong HC, Eom TG. Influence of tightening torque on implant-abutment screw joint stability. [MS dissertation] Korea :Pusan National University;2007
  21. Park JK, Jeong CM, Jeon YC. Influence of tungsten carbide/ carbon coating of implant-abutment on screw loosening. [DS dissertation] Korea :Pusan National University;2007
  22. Merz BR, Belser UC. Mechanics of the implant- abutment connection: An 8-degree taper compared to a butt joint connection Int J Oral Maxillofac Implants 2000;15:519-26
  23. Merz BR, Belser UC. Mechanics of the implant- abutment connection: An 8-degree taper compared to a butt joint connection. Implants 2003;18:865-72
  24. Ding TA, Woody RD, Higginbotton FL, Miller BH. Evaluation of the ITI morse taper implant/abutment design with an Internal modification. Int J Oral Maxillofac
  25. Wiskott HA. Resistance of ITI Implant Connectors to Multivectorial Fatigue Load Application. Int J Prosthodont 2004;17:672-9
  26. Perriard J, Wiskott WA, Mellal A, Scherrer SS, Botsis J, Belser UC. Fatigue resistance of ITI implant-abutment connectors-a compatison of the standard cone with a novel internally keyed design. Clin Oral Impl Res 2002;13:542-9 https://doi.org/10.1034/j.1600-0501.2002.130515.x
  27. Basten CH, Nicholls JI, Daly CH, Taggart R. Load Fatigue Performance of Two Implant-Abutment Combinations. Int J Oral Maxillofac Implants 1996; 11:522-8
  28. Wiskott HA, Nicholls JI, Belser UC. Stress Fatigue: Basic Principles and Prosthodontic Implications Int J Prosthodont 1995;8:105-16
  29. Patterson EA, John RB. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants 1992;7: 26-34
  30. Korioth TW, Cardoso AC, Versluis A. Effect of washers on reverse torque displacement of dental implant gold retaining screws. J Prosthet Dent 1999;82:312-6 https://doi.org/10.1016/S0022-3913(99)70086-7
  31. Strub JR, Gerds T. Fracture Strength and Failure Mode of five Different Single-Tooth Implant- Abutment Combinations. Int J Prosthodont 2003;16: 167-71
  32. ISO/FDIS 14801 Dentistry-Fatigue test for endosseous dental implants, Internal Organization for Standardization, 2003(E)
  33. Gratton DG, Aquilino SA, Stanford CM. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J Prosthet Dent 2001;85: 47-52 https://doi.org/10.1067/mpr.2001.112796
  34. Rangert B, Sullivan R. Biomechanical principles preventing prosthetic overload induced by bending. Nobelpharma News 1993;7(3):4-5
  35. Hansson S. Implant-abutment interface: biomechanical study of flat top versus conical. Clin Implant Dent Relat Res 2000;2:33-41 https://doi.org/10.1111/j.1708-8208.2000.tb00104.x
  36. Klesnil M, Lukas P. Fatigue of Metallic Materials. Amsterdam: Elsevier Science,1992
  37. Aboyoussef H, Weiner S, Ehrenberg D. Effect of an antirotation resistance form on screw loosening for single implant-supported crowns. J Prosthet Dent 2000;83:450-5 https://doi.org/10.1016/S0022-3913(00)70040-0
  38. Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Holbrook WB. Occlusal forces during chewing and swallowing as measured by sound transmission. J Prosthet Dent 1981;46:443-9 https://doi.org/10.1016/0022-3913(81)90455-8
  39. Gibbs CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK. Limits of human bite strength. J Prosthet Dent 1986;56:226-9 https://doi.org/10.1016/0022-3913(86)90480-4
  40. Haraldson T, Carlsson G. Bite force and oral function in patients with osseointegrated oral implants. Scand J Dent Res 1997;85:200-8
  41. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108