Fabrication of Chemical Sensors for the Detection of Acidic Gas using 1,3-bisdicyanovinylindane

1,3-bisdicyanovinylindane을 이용한 산성가스 감지용 화학 센서 제작

  • Song, Hwan-Moon (Department of Chemical Engineering, Chungnam National University) ;
  • Park, Young-Min (Department of Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Son, Young-A (Department of Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 송환문 (충남대학교 바이오응용화학부 화학공학과) ;
  • 박영민 (충남대학교 유기소재섬유시스템공학과) ;
  • 손영아 (충남대학교 유기소재섬유시스템공학과) ;
  • 이창수 (충남대학교 바이오응용화학부 화학공학과)
  • Received : 2007.09.05
  • Accepted : 2007.10.18
  • Published : 2008.02.28

Abstract

This study presented simple and efficient fabrication of chemical sensors for the detection of acidic gas using 1,3-bisdicyanovinylindane as an indicator because it can be promising materials having property of the rapid color change according to the variation of pH. The dissociation of proton and dye in acidic condition as changing of ion pairs give rise to dramatically change the absorbance intensity of 1,3-bisdicyanovinylindane, which can be easily applied to the development of chemical sensors. In addition, indicator dyes having negatively charge in aqueous phase can be easily fabricated using layer-by-layer (LBL) methods by way of electrostatic interaction. For the proof of concept, we demonstrated the abrupt presentation of skeleton symbol on the chemical sensor, which could be resulted from the reaction of 1,3-bisdicyanovinylindane as background color with acidic gas. Thus, the rapid appearance of symbol will induce user's caution under the emergency condition. The presented chemical gas sensor using 1,3-bisdicyanovinylindane have strong advantages. First, the fabrication process of gas sensor was very simple and low-cost. Secondly, sensors reacted by acidic gas could be reused for several times. Finally, the chemical gas sensor would be environmentally friend, which can be a basic tool for the realization of eco-organic sensor device.

본 연구는 산도 변화에 따라 색이 빠르게 변하는 특성을 가지고는 있는 반응성 염료(1,3-bisdicyanovinylindane)를 이용하여 신속하고 정확한 산성가스 검출을 위한 화학적 센서 제작을 위한 방법을 제안하였다. 반응성 염료(1,3-bisdicyanovinylindane)는 산성 상태에서 염료와 양성자의 해리되어 흡광도의 변화를 이용하면 손쉽게 미세화학센서를 제작 할 수 있었다. 또한, 반응성 염료는 수용액 상태에서 매우 안정적인 음전하를 지니고 있어 양전하를 지니는 고분자 전해질과 쉽게 layer-by-layer(LBL) 방법을 이용하여 다층 박막 구조를 쉽게 구현할 수 있었다. 먼저, 마이크로스탬프 위에 비반응성 염료와 양전하 고분자 전해질을 적층하여 다층박막을 형성한 후 센서기판에 프린팅한다. 이후 지시염료와 양전하 고분자 전해질을 다시 적층하여 최종 가스센서를 구현한다. 고안된 가스 센서는 산성가스와 반응을 통해 사용자에게 주의를 유도하는 해골 모양을 표현하여 실제 응용성을 보여주었다. 제시된 산성가스 감지센서는 첫째로 제작 과정이 매우 단순하며 저비용이고 둘째로 완성된 감지센서는 환원 과정을 통해 여러번 재사용될 수 있으며 마지막으로 센서 제작 공정이 매우 단순하며 수용액을 기반으로 하는 환경친화적 방법이다.

Keywords

Acknowledgement

Supported by : 보건복지부

References

  1. Harsanyi, G., Polymer Films in Sensor Applications: Technology Materials, Devices and Their Characteristics, Techenomics Publishing co., Lancaster, Basel(1995).
  2. Kish, L. B., Vajtai, R. C. and Granqvist, G., "Extracting Information from Noise Spectra of Chemical Sensors: Single Sensor Electronic Noses and Tongues", Sensors and Actuators. B, Chemical, 71(1/2), 51-59(2000).
  3. Mills, A. and Chang, Q., "Colorimetric Polymer Film Sensors for Dissolved Carbon Dioxide," Sensors and Actuators. B, Chemical, 21(2), 83-89(1994). https://doi.org/10.1016/0925-4005(94)80008-1
  4. Opekar, F. and Stulk, K., "Electrochemical Sensors with Solid Polymer Electrolytes", Analytica chemica acta, 385(1/3), 151-162 (1999). https://doi.org/10.1016/S0003-2670(98)00583-2
  5. Grate, J. W., "Acoustic Wave Microsensor Arrays for Vapor Sensing," Chem. Rev., 100(7), 2627-2647(2000). https://doi.org/10.1021/cr980094j
  6. Mills, A. and Chang, Q., "Colorimetric Polymer Film Sensors for Dissolved Carbon Dioxide," Sensors and Actuators. B, Chemical 21(2), 83-89(1994). https://doi.org/10.1016/0925-4005(94)80008-1
  7. Son, Y. A. and Sun, G., "Durable Antimicrobial Nylon 66fabric: Ionic Interaction with Quanternary Ammonium Salts," J. Applied Polymer Science 90(8), 2194-2199(2003). https://doi.org/10.1002/app.12876
  8. Ertekin, K., Karapire, C., Alp, S., Yenigul, B. and Icli, S., "Photophysical and Photochemical Characteristics of Anazlactone Dye In Sol-Gel Matrix; A New Fluorescent pH Indicator," Dyes and Pigments 56(2), 125-133(2003). https://doi.org/10.1016/S0143-7208(02)00125-0
  9. Arai, Y., Onishi, E., Segawa, H. and Yoshida, K., "Fiber-Optic Carbon Dioxide Sensor Utilizing Sensitive Film Containing Indicator Dye," Proceedings of SPIE--the International Society for Optical Engineering, 4185, 409-411(2000).
  10. Nakamura, N. and Amao, Y., "Optical CO2 Sensor with the Combination of Colorimetric Change of pH Indicator and Internal Reference Luminescent Dye," Bull. Chem. Soc. Jap. 76(7), 1459-1462(2003). https://doi.org/10.1246/bcsj.76.1459
  11. Amao, Y. and Nakamura, N., "Optical CO2 Sensor with the Combination of Colorimetric Change of ${\alpha}$-Naphtholphthalein and Internal Reference Fluorescent Porphyrin Dye," Sensors and Actuators. B, Chemical 100(3), 347-351(2004). https://doi.org/10.1016/j.snb.2004.02.003
  12. Wong, L. S., Brocklesby, W. S. and Bradley, M., "Fiber Optic pH Sensors Employing Tethered Non-Fluorescent Indicators on Macroporous Glass," Sensors and Actuators. B, Chemical 107(2), 957-962(2005). https://doi.org/10.1016/j.snb.2004.11.040
  13. Son, Y. A. and Kim, S. H., "New pH Indicator Based on 1,3-Bisdicyanovinylindane," Dyes and Pigments 64(2), 153-155(2005). https://doi.org/10.1016/j.dyepig.2004.05.006
  14. Wolfbeis, O. S., "Fiber Optic Chemical Sensors and Biosensors," CRC Press, Boca Raton(1991).
  15. Arisha, A., Young, P. and Baradi, M. E., "A Simulation Model to Characterize the Photolithography Process of a Semiconductor Wafer Fabrication," J. Materials Processing Technology 155, 2071-2079(2004). https://doi.org/10.1016/j.jmatprotec.2004.04.387
  16. Matsui, S. and Endo, N., "New Technology on Tri-Level Resist Doped with Dye for Submicron Photolithographic Process," Microelectronic Engineering 1(1), 51-67(1983). https://doi.org/10.1016/0167-9317(83)90012-6
  17. Potyrailo, R. A., Mikheenko, L. A., Borsuk, P. S., Golubkov, S. P. and Talanchuk, P. M., "Portable Photometric Ammonia Gas Analyser Using pH-Sensitive Polymer Dye-Films: Spectral Optimization of Performance Under Field Operating Conditions," Sensors and Actuators B, chemical 21(1), 65-70(1994). https://doi.org/10.1016/0925-4005(94)01226-1
  18. Wang, T. and Wang, X., "Solubilization of An Indicator Dye for Optical Fiber Chemical Sensors in Supercritical CO2 by Ion Pairing," Sensors and Actuators B, chemical 89(1/2), 144-149(2002). https://doi.org/10.1016/S0925-4005(02)00456-2
  19. Shim, H. W., Lee, J. H. and Lee, C. S., "Microcontact Printing of Bacteria Using Hybrid Agarose Gel Stamp," Korean J. Biotechnol. Bioeng. 21(4), 273-278(2006).