Biodiesel Production with Zinc Aluminate Catalysts in a High-Pressure-Fixed-Bed-Reactor

Zinc Aluminate 촉매를 이용한 고압연속식 고정층 반응기에서의 바이오디젤 제조

  • Vu, Khanh Bao (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Phan, Thuy Duong Nguyen (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Kim, Sunwook (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Shin, Eun Woo (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • ;
  • ;
  • 김선욱 (울산대학교 생명화학공학부) ;
  • 신은우 (울산대학교 생명화학공학부)
  • Received : 2007.08.29
  • Accepted : 2007.09.27
  • Published : 2008.02.28

Abstract

In this study, the effect of reaction conditions on the transesterification of soybean oil and methanol was investigated in a high-pressure-fixed-bed-reactor-system with zinc aluminate catalysts. Without catalysts, high-pressure-reaction at $300^{\circ}C$ and 1,200 psi brought 19% yields of methyl esters, which was caused by the approach of reaction condition to supercritical point of methanol. However, except the specific reaction condition, the yields in the reaction with no catalyst were very low below 4.5%. The zinc aluminate was prepared as catalyst by coprecipitation and characterized with $N_2$ gas adsorption/desorption and X-ray diffraction. With catalyst, the effect of the reaction parameters such as temperature, pressure, and molar ratio of reactants on biodiesel production was demonstrated. The higher temperature, pressure, and methanol molar ratio to soybean oil, the more yields of methyl esters. It was proved that among the reaction parameters, the reaction temperature be the most influential variable on methyl ester yields.

본 연구는 zinc aluminate 촉매를 사용한 고압연속식 고정층 반응시스템에서의 대두유와 메탄올의 transesterification에 관한 것이다. 바이오디젤 제조를 위한 고압 연속식 고정층 촉매 반응에서 반응 조건이 메틸에스터 생성에 미치는 영향이 주로 조사되었다. 촉매가 없는 경우, 거의 모든 반응 조건에서 메틸에스터의 수율이 4.5% 이하로 매우 낮았지만, $300^{\circ}C$, 1,200 psi 조건에서는 19%의 메틸에스터 수율을 보여 주었다. 이는 반응 조건이 메탄올의 초임계점에 근접하였기 때문으로 보인다. 촉매 반응에서는 무촉매 반응과 비교하여 비교적 낮은 온도와 압력에서도 높은 메틸에스터 수율을 보여주었다. 또한 수율에 미치는 반응 조건의 영향을 살펴본 결과, 반응온도, 압력, 반응물에서 메탄올 몰비가 높을수록 높은 메틸에스터 수율을 보여주었다. 반응 변수 중에서도 반응온도가 메틸에스터 수율에 가장 큰 영향을 미치는 것으로 확인되었다.

Keywords

Acknowledgement

Supported by : 교육인적자원부

References

  1. http://www.bath.ac.uk/powerttp/factsheets/biodiesel.pdf
  2. Kiss, A. A., Dimian, A. C. and Rothenberg, G., "Solid Acid Catalysts for Biodiesel Production - Towards Sustainable Energy," Adv. Synth. Catal., 348(1-2), 75-81(2006). https://doi.org/10.1002/adsc.200505160
  3. Li, H. and Xie, W., "Transesterification of Soybean Oil to Biodiesel with Zn/I2 Catalyst," Catal. Lett., 107(1-2), 25-30(2006). https://doi.org/10.1007/s10562-005-9727-9
  4. Xie, W. and Huang, X., "Synthesis of Biodiesel from Soybean Oil Using Heterogeneous KF/ZnO Catalyst," Catal. Lett., 107(1- 2), 53-59(2006). https://doi.org/10.1007/s10562-005-9731-0
  5. Demirbas, A., "Biodiesel Production from Vegetable Oils via Catalytic and Non-catalytic Supercritical Methanol Transesterification Methods," Progress in Energy and Combustion Science, 31(5-6), 466-487(2005). https://doi.org/10.1016/j.pecs.2005.09.001
  6. Du, W., Xu, Y., Liu, D. and Zeng, J., "Comparative Study on Lipase-catalyzed Transformation of Soybean Oil for Biodiesel Production with Different Acyl Acceptors," J. Mol.Catal. B, 30(3-4), 125-129(2004). https://doi.org/10.1016/j.molcatb.2004.04.004
  7. Ebiura, T., Echizen, T., Ishikawa, A., Murai, K. and Baba, T., "Selective Transesterification of Triolein with Methanol to Methyl Oleate and Glycerol Using Alumina Loaded with Alkali Metal Salt as a Solid-base Catalyst," Appl. Catal. A, 283(1-2), 111-116(2005). https://doi.org/10.1016/j.apcata.2004.12.041
  8. Bournay, L., Hillion, G., Boucot, P., Chodorge, J.-A., Bronner, and C., Forestiere, A., "Process for Producting Alkyl Esters from a Vegetable or Animal Oil and an Aliphatic Monoalcohol," US patent No. 6,878,837 B2(2005).
  9. Stern, R., Hillion, G., Rouxel, J.-J. and Leporq, S., "Process for the Production of Esters from Vegetable Oils or Animal Oils Alcohols," US patent No. 5,908,946(1999).
  10. McDonald, W. M., "Process for Dry Synthesis and Continous Separation of a Fatty Acid Methyl Ester Reaction Product," US patent No. 6,262,285 B1(2001).
  11. Solhy, A., Clark, J. H., Tahir, R., Sebti, S. and Larzek, M., "Transesterifications Catalysed by Solid, Reuseable Apatite-zinc Chloride Catalysts," Green Chem., 8(10), 871-874(2006). https://doi.org/10.1039/b605835n
  12. Suppes, G. J., Dasari, M. A., Doskocil, E. J., Mankidy, P. J. and Goff, M. J., "Transesterification of Soybean oil with Zeolite and Metal Catalysts," Appl. Catal., 257(2), 213-223(2004). https://doi.org/10.1016/j.apcata.2003.07.010
  13. van der Laag, N. J., Snel, M. D., Magusin, P. C. M. M. and With, G. de, "Structural, Elastic, Thermophysical and Dielectric Properties of Zinc Aluminate $(ZnAl_2O_4)$," J. European Ceramic Society, 24(8), 2417-2424(2004). https://doi.org/10.1016/j.jeurceramsoc.2003.06.001
  14. Zawadzki, M. and Wrzyszcz, J., "Hydrothermal Synthesis of Nanoporous Zinc Aluminate with High Surface Area," Materials Research Bulletin, 35(1), 109-114(2000). https://doi.org/10.1016/S0025-5408(00)00185-9