DOI QR코드

DOI QR Code

Comparison of the elastic modulus among three dentin adhesives before and after thermocycling

열시효 처리에 따른 상아질 접착 계면의 탄성계수의 변화 비교

  • Chang, Ju-Hea (Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, In-Bog (Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Cho, Byeong-Hoon (Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Hae-Young (Craniomaxillofacial Life Science 21 and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Son, Ho-Hyun (Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University)
  • 장주혜 (서울대학교 치의학전문대학원) ;
  • 이인복 (서울대학교 치의학전문대학원) ;
  • 조병훈 (서울대학교 치의학전문대학원) ;
  • 김혜영 (서울대학교 치의학생명과학사업단) ;
  • 손호현 (서울대학교 치의학전문대학원)
  • Published : 2008.01.31

Abstract

The purpose of this study was to determine the effects on the elastic moduli of the adhesive and the hybrid layer from thermocycling. Twenty one human molars were used to create flat dentin surfaces. Each specimen was bonded with a light-cured composite using one of three commercial adhesives (OptiBond FL [OP], Clearfil SE Bond [CL], and Xeno III [XE]). These were sectioned into two halves and subsequently cut to yield 2-mm thickness specimens; one specimen for immediate bonding test without thermocycling and the other subjected to 10,000 times of thermocycling. Nanoindentation test was performed to measure the modulus of elasticity of the adhesive and the hybrid layer, respectively, using an atomic force microscope. After thermocycling, XE showed a significant decrease of the modulus in the adhesive layer (p < 0.05). Adhesives containing hydrophilic monomers are prone to hydrolytic degradation. It may result in the reduced modulus of elasticity, which leads to the mechanically weakened bonding interface.

본 연구는 현재 시판되고 있는 여러 개의 상아질 접착제를 임상 술식에서와 같은 방법으로 사용한 후 열 시효처리를 통해 노화 과정을 재현한 다음 접착 계면의 탄성계수를 측정함으로써 가수분해에 따른 물성변화를 관찰 비교하고자 했다. 발거 한 지 2 주일 이내인 영구 대구치 21 개의 상아질 표면이 노출되도록 삭제하였다. 각각 7개의 치아에 시판되고 있는 3가지 상아질 접착제 (OptiBond FL, Clearfil SE, Xeno III)를 적용한 뒤 광중합 복합 레진(Premisa, Kerr, Orange, CA, USA) 를 1 mm 두께로 쌓아 올렸다. 각 치아를 이등분하여 절반 시편은 100,000회의 열 시효 처리를 가하도록 했다. Nanoindentation test를 통하여 각 시편의 adhesive layer와 hybrid layer의 탄성계수를 측정, 비교하였다. 열시효 처리 후 Xeno III군의 탄성계수가 통계학적으로 유의할 만한 감소를 보였다 (p < 0.05). Hydrophilic monomer를 많이 함유한 one-step self-etch adhesive system은 다른 제품에 비해 가수분해에 취약하여 이에 따른 물성 변화를 보이는 것으로 추정되며, 궁극적으로 수복물의 내구성에 영향을 미칠 것으로 여겨진다.

Keywords

References

  1. Hashimoto M, Ohno H, Sano H, Kaga M, Oguchi H. In vitro degradation of resin-dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials 24:3795-3803, 2003 https://doi.org/10.1016/S0142-9612(03)00262-X
  2. Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E. Dental adhesion review: Aging and stability of the bonded interface. Dent Mater (in press) 16:16, 2007
  3. Dijken JW, Sunnegardh-Gronberg K, Lindberg A. Clinical long-term retention of etch-and-rinse and selfetch adhesive systems in non-carious cervical lesions A 13 years evaluation. Dent Mater 23:1101-1107, 2007 https://doi.org/10.1016/j.dental.2006.10.005
  4. Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 26:6449-6459, 2005 https://doi.org/10.1016/j.biomaterials.2005.04.052
  5. De Munck J, Van Meerbeek B, Yoshida Y, Inoue S, Vargas M, Suzuki K et al. Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res 82:136-140, 2003 https://doi.org/10.1177/154405910308200212
  6. Carrilho MR, Tay FR, Pashley DH, Tjaderhane L, Carvalho RM. Mechanical stability of resin-dentin bond components. Dent Mater 21:232-241, 2005 https://doi.org/10.1016/j.dental.2004.06.001
  7. Angker L, Nockolds C, Swain MV, Kilpatrick N. Correlating the mechanical properties to the mineral content of carious dentine--a comparative study using an ultra-micro indentation system (UMIS) and SEMBSE signals. Arch Oral Biol 49:369-378, 2004 https://doi.org/10.1016/j.archoralbio.2003.12.005
  8. Marshall GW, Jr., Balooch M, Gallagher RR, Gansky SA, Marshall SJ. Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J Biomed Mater Res 54:87-95, 2001 https://doi.org/10.1002/1097-4636(200101)54:1<87::AID-JBM10>3.0.CO;2-Z
  9. Oliveira SS, Marshall SJ, Habelitz S, Gansky SA, Wilson RS, Marshall GW, Jr. The effect of a self-etching primer on the continuous demineralization of dentin. Eur J Oral Sci 112:376-383, 2004 https://doi.org/10.1111/j.1600-0722.2004.00142.x
  10. Inoue G, Tsuchiya S, Nikaido T, Foxton RM, Tagami J. Morphological and mechanical characterization of the acid-base resistant zone at the adhesive-dentin interface of intact and caries-affected dentin. Oper Dent 31:466-472, 2006 https://doi.org/10.2341/05-62
  11. Oliver WC PG. An improved technique for determining hardness and elastic modulus using load and displacemen sensing indentaion experimens. J Mater Res 7:1564-1583,1992 https://doi.org/10.1557/JMR.1992.1564
  12. Ge J, Cui FZ, Wang XM, Feng HL. Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 26:3333-3339, 2005 https://doi.org/10.1016/j.biomaterials.2004.07.059
  13. Doerner MF NW. A method for interpreting the data from depth-sensing indentation instruments 1:601- 609, 1986 https://doi.org/10.1557/JMR.1986.0601
  14. Donmez N, Belli S, Pashley DH, Tay FR. Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives. J Dent Res 84:355- 359, 2005 https://doi.org/10.1177/154405910508400412
  15. Reis AF, Giannini M, Pereira PN. Long-term TEM analysis of the nanoleakage patterns in resin-dentin interfaces produced by different bonding strategies. Dent Mater 23(9):1164-1172, 2007 https://doi.org/10.1016/j.dental.2006.10.006
  16. Yuan Y, Shimada Y, Ichinose S, Tagami J. Qualitative analysis of adhesive interface nanoleakage using FESEM/ EDS. Dent Mater 23(5):561-569, 2007 https://doi.org/10.1016/j.dental.2006.03.015
  17. Toledano M, Osorio R, Albaladejo A, Aguilera FS, Osorio E. Differential effect of in vitro degradation on resin-dentin bonds produced by self-etch versus totaletch adhesives. J Biomed Mater Res A 77:128-135, 2006
  18. Koshiro K, Inoue S, Tanaka T, Koase K, Fujita M, Hashimoto M et al. In vivo degradation of resin-dentin bonds produced by a self-etch vs. a total-etch adhesive system. Eur J Oral Sci 112:368-375, 2004 https://doi.org/10.1111/j.1600-0722.2004.00141.x
  19. Tay FR, Suh BI, Pashley DH, Prati C, Chuang SF, Li F. Factors contributing to the incompatibility between simplified-step adhesives and self-cured or dual-cured composites. Part II. Single-bottle, total-etch adhesive. J Adhes Dent 5:91-105, 2003
  20. Hashimoto M, Ohno H, Sano H, Tay FR, Kaga M, Kudou Y et al. Micromorphological changes in resindentin bonds after 1 year of water storage. J Biomed Mater Res 63:306-311, 2002 https://doi.org/10.1002/jbm.10208
  21. Burrow MF, Inokoshi S, Tagami J. Water sorption of several bonding resins. Am J Dent 12:295-298, 1999
  22. Reis AF, Giannini M, Pereira PN. Influence of waterstorage time on the sorption and solubility behavior of current adhesives and primer/adhesive mixtures. Oper Dent 32:53-59, 2007 https://doi.org/10.2341/06-13
  23. Malacarne J, Carvalho RM, de Goes MF, Svizero N, Pashley DH, Tay FR et al. Water sorption/solubility of dental adhesive resins. Dent Mater 22:973-980, 2006 https://doi.org/10.1016/j.dental.2005.11.020
  24. Hosaka K, Tagami J, Nishitani Y, Yoshiyama M, Carrilho M, Tay FR et al. Effect of wet vs. dry testing on the mechanical properties of hydrophilic self-etching primer polymers. Eur J Oral Sci 115:239-245, 2007 https://doi.org/10.1111/j.1600-0722.2007.00452.x
  25. Van Meerbeek B, Willems G, Celis JP, Roos JR, Braem M, Lambrechts P et al. Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J Dent Res 72:1434-1442, 1993 https://doi.org/10.1177/00220345930720101401
  26. Hosoya Y, Tay FR. Hardness, elasticity, and ultrastructure of bonded sound and caries-affected primary tooth dentin. J Biomed Mater Res B Appl Biomater 81:135-141, 2007
  27. Drummond JL. Nanoindentation of dental composites. J Biomed Mater Res B Appl Biomater 78:27-34, 2006
  28. Xu HH, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP et al. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 77:472-480, 1998 https://doi.org/10.1177/00220345980770030601
  29. Senawongse P, Harnirattisai C, Otsuki M, Tagami J. Effect of LED light-curing time for the adhesive resin on the modulus of elasticity. Am J Dent 20:139-141, 2007
  30. Reis AF, Giannini M, Pereira PN. Effects of a peripheral enamel bond on the long-term effectiveness of dentin bonding agents exposed to water in vitro. J Biomed Mater Res B Appl Biomater (in press) 6:6, 2007
  31. Toledano M, Osorio R, Osorio E, Aguilera FS, Yamauti M, Pashley DH et al. Durability of resin-dentin bonds: effects of direct/indirect exposure and storage media. Dent Mater 23:885-892, 2007 https://doi.org/10.1016/j.dental.2006.06.030
  32. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 27:89- 99, 1999 https://doi.org/10.1016/S0300-5712(98)00037-2