References
- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley-Interscience Publication, New York, 2001
- E. Parzen, "On estimation of a probability density function and mode," Analysis of Mathematical Statistics, vol. 33, pp. 1065-1076, 1962 https://doi.org/10.1214/aoms/1177704472
- B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall/CRC, 1986
- S. Fiori and P. Bucciarelli, "Probability density estimation using adaptive activation function neurons," Neural Processing Letters, vol. 12, pp. 31-42, 2001
- A. Sarajedini, R. Hecht-Nielsen, and P. M. Chau, "Conditional probability density function estimation with sigmoidal neural networks," IEEE Trans. on Neural Networks, vol. 10, no. 2, pp. 231-238, 1999 https://doi.org/10.1109/72.750544
- Y. Baram and Z. Roth, "Forecasting by density shaping using neural networks," IEEE/IAFE Proc. of Computational Intelligence for Financial Engineering, pp. 57-71, 1995
- A. Likas, "Probability density estimation using artificial neural networks," Computer Physics Communications, vol. 135, no. 2, pp. 167-175, 2001 https://doi.org/10.1016/S0010-4655(00)00235-6
- D. S. Modha and Y. Fainman, "A learning law for density estimation," IEEE Trans. on Neural Networks, vol. 5, no. 3, pp. 519-523, 1994 https://doi.org/10.1109/72.286931
- H. Yin and N. M. Allinson, "Self-organizing mixture networks for probability density estimation," IEEE Trans. on Neural Networks, vol. 12, no. 2, pp. 405- 411, 2001 https://doi.org/10.1109/72.914534
- T. Kostiainen and J. Lampinen, "On the generative probability density model in the self-organizing map," Neurocomputing, vol. 48, pp. 217-228, 2002 https://doi.org/10.1016/S0925-2312(01)00649-X
- M. Strikanth, H. K. Kesavan, and P. H. Roe, "Probability density function estimation using the MinMax measure," IEEE Trans. on Systems, Man, and Cybernetics-Part C: Applications and Reviews, vol. 30, no. 1, pp. 77-83, 2000 https://doi.org/10.1109/5326.827456
- G. Miller and D. Horn, "Maximum entropy approach to probability density estimation," Proc. of Int. Conf. on Knowledge-Based Intelligent Electronic Systems, vol. 1, pp. 225-230, 1998
- J. N. Kapur, G. Baciu, and H. K. Kesavan, "The MinMax information measure," Int. J. of System Science, vol. 26, no. 1, pp. 1-12, 1995 https://doi.org/10.1080/00207729508929020
- K. Kokkinakis, "Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling," Signal Processing, vol. 85, no. 9, pp. 1852-1858, 2005 https://doi.org/10.1016/j.sigpro.2005.02.017
- C. Wang and W. Wang, "Links between PPCA and subspace methods for complete Gaussian density estimation," IEEE Trans. on Neural Networks, vol. 17, no. 3, pp. 789-792, 2006 https://doi.org/10.1109/TNN.2006.871718
- T. Kohonen, "The self-organization map," Proc. of the IEEE, vol. 78, no. 9, pp. 1464-1480, 1990 https://doi.org/10.1109/5.58325
- M. E. Tipping and C. M. Bishop, "Probability principle component analysis," J. Roy. Statist. Soc., Ser. B, vol. 21, no. 3, pp. 611-622, 1999
- A. Rodriguez and E. T. Horst, "Dynamic density estimation with financial applications," http://ftp.stat.duke.edu/WorkingPapers/06-21.pdf, 2006
- C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995
- K. Murphy, Dynamic Bayesian networks: Representation, Inference and Learning, Ph.D. Dissertation, UC Berkeley, 2002
- J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications, and Control, Prentice Hall, New Jersey, 1995
- A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, McGraw Hill, 2002
- R. J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley & Sons, New York, 1980
- W. J. Rugh, Linear System Theory, Prentice Hall, 1996
- H. Wang, A. Wang, and Y. Wang, "Online estimation algorithm for the unknown probability density functions of random parameters in auto-regression and exogenous stochastic systems," IEEE Proc.-Control Theory Applications, vol. 153, no. 4, pp. 462-468, 2006 https://doi.org/10.1049/ip-cta:20050312